This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/template/static_modint.hpp"
自動で $\mathrm{mod}$ をとる構造体です.
$\mathrm{mod}$ はコンパイル時定数である必要があります.
基本的には modint998244353
か modint1000000007
を使えば十分で,以下のように使えます.
#include "template/template.hpp"
#include "template/static_modint.hpp"
using mint = modint998244353;
int main(void) {
mint sum = 0;
for(int i = 0; i < 10000; i++) {
sum += i;
}
cout << sum << '\n'; // 8828235 (= 5000050000 % 998244353)
}
その他の $\mathrm{mod}$ で使いたい場合はページ下部の Tips
を参照してください.
mint x
mint
のデフォルトコンストラクタです.制約
ll
に収まる値であること計算量
unsigned int mint::mod()
$\mathrm{mod}$ を返します.
計算量
unsigned int x.val()
$x$ に格納されている値を int
型で返します.
計算量
-mint;
mint++;
mint--;
--mint;
++mint;
mint += mint;
mint -= mint;
mint *= mint;
mint /= mint;
mint + mint;
mint - mint;
mint * mint;
mint / mint;
mint == mint;
mint != mint;
が動きます.
mint x = 58;
1 + x;
なども,
mint(1) + x
と (自動で解釈されるので) 動きます.
また,
mint x;
cin >> x;
cout << x;
により入出力もできます.
制約
a / b
と a /= b
を行うとき, $gcd(b, \mathrm{mod}) = 1$計算量
mint x.pow(ll n)
$x^n$ を返します.
制約
計算量
mint x.inv()
$xy \equiv 1$ なる $y$ を返します.
制約
計算量
mint mint::raw(int x)
$x$ に対して $\mathrm{mod}$ を取らずに mint(x)
を返します.
定数倍高速化のための関数です.
値が $\mathrm{mod}$ 以上になる場合の挙動は未定義です.
制約
計算量
$998244353$ と $1000000007$ 以外で modint
を使いたい場合は以下のように書けます.
ただし,冒頭でも述べた通り, $\mathrm{mod}$ に指定する整数はコンパイル時定数である必要があります.
using mint = StaticModint<1234567891>;
modint998244353
と modint1000000007
はそれぞれ StaticModint<998244353>
と StaticModint<1000000007>
のエイリアスになっています.
#pragma once
#include "./template.hpp"
template <uint32_t m>
struct StaticModint {
using mint = StaticModint;
static constexpr uint32_t mod() {
return m;
}
static constexpr mint raw(const uint32_t v) {
mint a;
a._v = v;
return a;
}
constexpr StaticModint()
: _v(0) {}
template <class T>
constexpr StaticModint(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = uint32_t(x);
} else _v = uint32_t(v % m);
}
constexpr uint32_t val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(long long n) const {
assert(0 <= n);
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
if constexpr(prime) {
assert(_v);
return pow(m - 2);
} else {
const auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return uint64_t(lhs._v) * rhs._v;
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
uint32_t _v = 0;
static constexpr bool prime = []() -> bool {
if(m == 1) return 0;
if(m == 2 or m == 7 or m == 61) return 1;
if(m % 2 == 0) return 0;
uint32_t d = m - 1;
while(d % 2 == 0) d /= 2;
for(uint32_t a : {2, 7, 61}) {
uint32_t t = d;
mint y = mint(a).pow(t);
while(t != m - 1 && y != 1 && y != m - 1) {
y *= y;
t <<= 1;
}
if(y != m - 1 && t % 2 == 0) return 0;
}
return 1;
}();
static constexpr pair<int32_t, int32_t> inv_gcd(const int32_t a, const int32_t b) {
if(a == 0) return {b, 0};
int32_t s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const int32_t u = s / t;
s -= t * u;
m0 -= m1 * u;
swap(s, t);
swap(m0, m1);
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
};
using modint998244353 = StaticModint<998244353>;
using modint1000000007 = StaticModint<1000000007>;
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/template/static_modint.hpp"
template <uint32_t m>
struct StaticModint {
using mint = StaticModint;
static constexpr uint32_t mod() {
return m;
}
static constexpr mint raw(const uint32_t v) {
mint a;
a._v = v;
return a;
}
constexpr StaticModint()
: _v(0) {}
template <class T>
constexpr StaticModint(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = uint32_t(x);
} else _v = uint32_t(v % m);
}
constexpr uint32_t val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(long long n) const {
assert(0 <= n);
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
if constexpr(prime) {
assert(_v);
return pow(m - 2);
} else {
const auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return uint64_t(lhs._v) * rhs._v;
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
uint32_t _v = 0;
static constexpr bool prime = []() -> bool {
if(m == 1) return 0;
if(m == 2 or m == 7 or m == 61) return 1;
if(m % 2 == 0) return 0;
uint32_t d = m - 1;
while(d % 2 == 0) d /= 2;
for(uint32_t a : {2, 7, 61}) {
uint32_t t = d;
mint y = mint(a).pow(t);
while(t != m - 1 && y != 1 && y != m - 1) {
y *= y;
t <<= 1;
}
if(y != m - 1 && t % 2 == 0) return 0;
}
return 1;
}();
static constexpr pair<int32_t, int32_t> inv_gcd(const int32_t a, const int32_t b) {
if(a == 0) return {b, 0};
int32_t s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const int32_t u = s / t;
s -= t * u;
m0 -= m1 * u;
swap(s, t);
swap(m0, m1);
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
};
using modint998244353 = StaticModint<998244353>;
using modint1000000007 = StaticModint<1000000007>;