This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/matrix_rank"
#include "../../../src/template/template.hpp"
#include "../../../src/template/static_modint.hpp"
#include "../../../src/matrix/gauss_elimination.hpp"
using mint = modint998244353;
int main(void) {
int n, m;
cin >> n >> m;
Matrix<mint> a(n, m);
rep(i, 0, n) {
rep(j, 0, m) {
cin >> a[i][j];
}
}
auto [rank, det] = gauss_elimination(a);
cout << rank << '\n';
}
#line 1 "verify/library_checker/linear_algebra/rank_of_matrix.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/matrix_rank"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/template/static_modint.hpp"
template <uint32_t m>
struct StaticModint {
using mint = StaticModint;
static constexpr uint32_t mod() {
return m;
}
static constexpr mint raw(const uint32_t v) {
mint a;
a._v = v;
return a;
}
constexpr StaticModint()
: _v(0) {}
template <class T>
constexpr StaticModint(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = uint32_t(x);
} else _v = uint32_t(v % m);
}
constexpr uint32_t val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(long long n) const {
assert(0 <= n);
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
if constexpr(prime) {
assert(_v);
return pow(m - 2);
} else {
const auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return uint64_t(lhs._v) * rhs._v;
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
uint32_t _v = 0;
static constexpr bool prime = []() -> bool {
if(m == 1) return 0;
if(m == 2 or m == 7 or m == 61) return 1;
if(m % 2 == 0) return 0;
uint32_t d = m - 1;
while(d % 2 == 0) d /= 2;
for(uint32_t a : {2, 7, 61}) {
uint32_t t = d;
mint y = mint(a).pow(t);
while(t != m - 1 && y != 1 && y != m - 1) {
y *= y;
t <<= 1;
}
if(y != m - 1 && t % 2 == 0) return 0;
}
return 1;
}();
static constexpr pair<int32_t, int32_t> inv_gcd(const int32_t a, const int32_t b) {
if(a == 0) return {b, 0};
int32_t s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const int32_t u = s / t;
s -= t * u;
m0 -= m1 * u;
swap(s, t);
swap(m0, m1);
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
};
using modint998244353 = StaticModint<998244353>;
using modint1000000007 = StaticModint<1000000007>;
#line 3 "src/matrix/matrix.hpp"
template <typename T>
struct Matrix {
Matrix(const int h, const int w, const T& val = 0)
: h(h), w(w), A(h, vector<T>(w, val)) {}
int H() const {
return h;
}
int W() const {
return w;
}
const vector<T>& operator[](const int i) const {
assert(0 <= i and i < h);
return A[i];
}
vector<T>& operator[](const int i) {
assert(0 <= i and i < h);
return A[i];
}
static Matrix I(const int n) {
Matrix mat(n, n);
for(int i = 0; i < n; ++i) mat[i][i] = 1;
return mat;
}
Matrix& operator+=(const Matrix& B) {
assert(h == B.h and w == B.w);
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
(*this)[i][j] += B[i][j];
}
}
return (*this);
}
Matrix& operator-=(const Matrix& B) {
assert(h == B.h and w == B.w);
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
(*this)[i][j] -= B[i][j];
}
}
return (*this);
}
Matrix& operator*=(const Matrix& B) {
assert(w == B.h);
vector<vector<T>> C(h, vector<T>(B.w, 0));
for(int i = 0; i < h; ++i) {
for(int k = 0; k < w; ++k) {
for(int j = 0; j < B.w; ++j) {
C[i][j] += (*this)[i][k] * B[k][j];
}
}
}
A.swap(C);
return (*this);
}
Matrix& pow(long long t) {
assert(h == w);
assert(t >= 0);
Matrix B = Matrix::I(h);
while(t > 0) {
if(t & 1ll) B *= (*this);
(*this) *= (*this);
t >>= 1ll;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix& B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix& B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix& B) const {
return (Matrix(*this) *= B);
}
bool operator==(const Matrix& B) const {
assert(h == B.H() and w == B.W());
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
if(A[i][j] != B[i][j]) return false;
}
}
return true;
}
bool operator!=(const Matrix& B) const {
assert(h == B.H() and w == B.W());
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
if(A[i][j] != B[i][j]) return true;
}
}
return false;
}
private:
int h, w;
vector<vector<T>> A;
};
#line 4 "src/matrix/gauss_elimination.hpp"
template <typename T>
pair<int, T> gauss_elimination(Matrix<T>& a, int pivot_end = -1) {
const int h = a.H(), w = a.W();
int rank = 0;
assert(-1 <= pivot_end and pivot_end <= w);
if(pivot_end == -1) pivot_end = w;
T det = 1;
for(int j = 0; j < pivot_end; ++j) {
int idx = -1;
for(int i = rank; i < h; ++i) {
if(a[i][j] != T(0)) {
idx = i;
break;
}
}
if(idx == -1) {
det = 0;
continue;
}
if(rank != idx) det = -det, swap(a[rank], a[idx]);
det *= a[rank][j];
if(a[rank][j] != T(1)) {
const T coeff = T(1) / a[rank][j];
for(int k = j; k < w; ++k) a[rank][k] *= coeff;
}
for(int i = 0; i < h; ++i) {
if(i == rank) continue;
if(a[i][j] != T(0)) {
const T coeff = a[i][j] / a[rank][j];
for(int k = j; k < w; ++k) a[i][k] -= a[rank][k] * coeff;
}
}
++rank;
}
return {rank, det};
}
#line 5 "verify/library_checker/linear_algebra/rank_of_matrix.test.cpp"
using mint = modint998244353;
int main(void) {
int n, m;
cin >> n >> m;
Matrix<mint> a(n, m);
rep(i, 0, n) {
rep(j, 0, m) {
cin >> a[i][j];
}
}
auto [rank, det] = gauss_elimination(a);
cout << rank << '\n';
}