This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/lcm_convolution"
#include "../../../src/template/template.hpp"
#include "../../../src/template/static_modint.hpp"
#include "../../../src/convolution/lcm_convolution.hpp"
using mint = modint998244353;
int main(void) {
int n;
cin >> n;
vector<mint> a(n + 1), b(n + 1);
rep(i, 1, n + 1) cin >> a[i];
rep(i, 1, n + 1) cin >> b[i];
vector<mint> c = lcm_convolution(a, b);
rep(i, 1, n + 1) cout << c[i] << " \n"[i == n];
}
#line 1 "verify/library_checker/convolution/lcm_convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/lcm_convolution"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/template/static_modint.hpp"
template <uint32_t m>
struct StaticModint {
using mint = StaticModint;
static constexpr uint32_t mod() {
return m;
}
static constexpr mint raw(const uint32_t v) {
mint a;
a._v = v;
return a;
}
constexpr StaticModint()
: _v(0) {}
template <class T>
constexpr StaticModint(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = uint32_t(x);
} else _v = uint32_t(v % m);
}
constexpr uint32_t val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(long long n) const {
assert(0 <= n);
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
if constexpr(prime) {
assert(_v);
return pow(m - 2);
} else {
const auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return uint64_t(lhs._v) * rhs._v;
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
uint32_t _v = 0;
static constexpr bool prime = []() -> bool {
if(m == 1) return 0;
if(m == 2 or m == 7 or m == 61) return 1;
if(m % 2 == 0) return 0;
uint32_t d = m - 1;
while(d % 2 == 0) d /= 2;
for(uint32_t a : {2, 7, 61}) {
uint32_t t = d;
mint y = mint(a).pow(t);
while(t != m - 1 && y != 1 && y != m - 1) {
y *= y;
t <<= 1;
}
if(y != m - 1 && t % 2 == 0) return 0;
}
return 1;
}();
static constexpr pair<int32_t, int32_t> inv_gcd(const int32_t a, const int32_t b) {
if(a == 0) return {b, 0};
int32_t s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const int32_t u = s / t;
s -= t * u;
m0 -= m1 * u;
swap(s, t);
swap(m0, m1);
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
};
using modint998244353 = StaticModint<998244353>;
using modint1000000007 = StaticModint<1000000007>;
#line 3 "src/math/eratosthenes_sieve.hpp"
struct EratosthenesSieve {
vector<int> primes, min_factor, moebius, euler;
EratosthenesSieve(const int N)
: primes(), min_factor(N + 1), moebius(N + 1, 1), euler(N + 1), N(N) {
assert(N >= 1);
iota(min_factor.begin(), min_factor.end(), 0);
min_factor[0] = min_factor[1] = -1;
iota(euler.begin(), euler.end(), 0);
for(int i = 2; i <= N; ++i) {
if(min_factor[i] < i) continue;
primes.emplace_back(i);
moebius[i] = -1;
euler[i] = euler[i] / i * (i - 1);
for(int j = i * 2; j <= N; j += i) {
if(min_factor[j] == j) min_factor[j] = i;
if((j / i) % i == 0) moebius[j] = 0;
else moebius[j] = -moebius[j];
euler[j] = euler[j] / i * (i - 1);
}
}
}
vector<pair<int, int>> prime_factors(int n) const {
assert(1 <= n and n <= N);
vector<pair<int, int>> res;
while(n > 1) {
const int p = min_factor[n];
int exp = 0;
while(min_factor[n] == p) {
n /= p;
++exp;
}
res.emplace_back(p, exp);
}
return res;
}
vector<int> divisor(const int n) const {
assert(1 <= n and n <= n);
vector<int> res({1});
const auto pf = prime_factors(n);
for(const auto& p : pf) {
const int s = (int)res.size();
for(int i = 0; i < s; ++i) {
int v = 1;
for(int j = 0; j < p.second; ++j) {
v *= p.first;
res.push_back(res[i] * v);
}
}
}
sort(res.begin(), res.end());
return res;
}
private:
int N;
};
#line 4 "src/math/divisor_multiple_transform.hpp"
struct DivisorTransform {
template <typename T>
static void zeta_transform(vector<T>& f) {
const int N = f.size() - 1;
const auto sieve = EratosthenesSieve(N).primes;
for(const auto& p : sieve) {
for(int k = 1; k * p <= N; ++k) f[k * p] += f[k];
}
}
template <typename T>
static void moebius_transform(vector<T>& g) {
const int N = g.size() - 1;
const auto sieve = EratosthenesSieve(N).primes;
for(const auto& p : sieve) {
for(int k = N / p; k > 0; --k) g[k * p] -= g[k];
}
}
};
struct MultipleTransform {
template <typename T>
static void zeta_transform(vector<T>& f) {
const int N = f.size() - 1;
const auto sieve = EratosthenesSieve(N).primes;
for(const auto& p : sieve) {
for(int k = N / p; k > 0; --k) f[k] += f[k * p];
}
}
template <typename T>
static void moebius_transform(vector<T>& g) {
const int N = g.size() - 1;
const auto sieve = EratosthenesSieve(N).primes;
for(const auto& p : sieve) {
for(int k = 1; k * p <= N; ++k) g[k] -= g[k * p];
}
}
};
#line 4 "src/convolution/lcm_convolution.hpp"
template <typename mint>
vector<mint> lcm_convolution(const vector<mint>& a, const vector<mint>& b) {
assert(a.size() == b.size());
auto s = a, t = b;
DivisorTransform::zeta_transform(s);
DivisorTransform::zeta_transform(t);
for(int i = 0; i < (int)a.size(); ++i) s[i] *= t[i];
DivisorTransform::moebius_transform(s);
return s;
}
#line 5 "verify/library_checker/convolution/lcm_convolution.test.cpp"
using mint = modint998244353;
int main(void) {
int n;
cin >> n;
vector<mint> a(n + 1), b(n + 1);
rep(i, 1, n + 1) cin >> a[i];
rep(i, 1, n + 1) cin >> b[i];
vector<mint> c = lcm_convolution(a, b);
rep(i, 1, n + 1) cout << c[i] << " \n"[i == n];
}