This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "../../../src/template/template.hpp"
#include "../../../src/random/random_number_generator.hpp"
#include "../../../src/template/modint_2_61m1.hpp"
#include "../../../src/string/dynamic_rolling_hash.hpp"
using mint = Modint_2_61m1;
void test() {
int n = rng(1, 2000), q = 2000;
string s = "";
rep(i, 0, n) {
s += 'a' + rng(0, 25);
}
ll base = rng(1ll << 10, 1ll << 60);
DynamicRollingHash drh(s, base);
while(q--) {
int type = rng(0, 1);
if(type == 0) {
int len = rng(0, n);
int l = rng(0, n - len), r = l + len;
mint ans = 0, b = 1;
rep(i, l, r) {
ans += b * s[i];
b *= base;
}
assert(drh.get(l, r) == ans.val());
} else {
int idx = rng(0, n - 1);
char c = 'a' + rng(0, 25);
s[idx] = c;
drh.set(idx, c);
}
}
}
int main(void) {
constexpr int test_num = 100;
rep(_, 0, test_num) {
test();
}
int a, b;
cin >> a >> b;
cout << a + b << '\n';
}
#line 1 "verify/unit_test/string/dynamic_rolling_hash.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/random/random_number_generator.hpp"
struct RandomNumberGenerator {
RandomNumberGenerator()
: mt(chrono::steady_clock::now().time_since_epoch().count()) {}
template <typename T>
inline T operator()(const T lower, const T upper) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(lower <= upper);
if constexpr(is_integral_v<T>) {
uniform_int_distribution<T> dist(lower, upper);
return dist(mt);
} else if constexpr(is_floating_point_v<T>) {
uniform_real_distribution<T> dist(lower, upper);
return dist(mt);
}
}
template <typename T>
inline vector<T> vec(const int n, const T lower, const T upper, const bool dup = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(lower <= upper);
if(n == 0) return {};
vector<T> res(n);
if(dup or is_floating_point_v<T>) {
for(int i = 0; i < n; ++i) res[i] = this->operator()(lower, upper);
} else {
assert(upper - lower + 1 >= n);
if(upper - lower + 1 >= 2 * n) {
set<T> used;
while((int)used.size() < n) {
const T a = this->operator()(lower, upper);
used.insert(a);
}
int i = 0;
for(const T a : used) {
res[i] = a;
++i;
}
} else {
const vector<int> p = perm(upper - lower + 1, false);
for(int i = 0; i < n; ++i) {
res[i] = p[i] + lower;
}
}
}
return res;
}
inline vector<int> perm(const int n, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
vector<int> res(n);
for(int i = 0; i < n; ++i) res[i] = i + one;
for(int i = n - 1; i > 0; --i) {
swap(res[i], res[this->operator()(0, i)]);
}
return res;
}
inline pair<vector<int>, vector<int>> tree(const int n, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
if(n <= 1) return {{}, {}};
if(n == 2) return {{0 + one}, {1 + one}};
vector<int> u(n - 1), v(n - 1);
const vector<int> pruefer = vec(n - 2, 0, n - 1);
set<int> st;
vector<int> cnt(n);
for(int i = 0; i < n; ++i) st.insert(i);
auto add = [&](const int x) -> void {
if(x > n) return;
if(cnt[x] == 0) st.erase(x);
++cnt[x];
};
auto del = [&](const int x) -> void {
if(x > n) return;
--cnt[x];
if(cnt[x] == 0) st.insert(x);
};
for(int i = 0; i < n - 2; ++i) add(pruefer[i]);
for(int i = 0; i < n - 2; ++i) {
const int a = *st.begin();
const int b = pruefer[i];
u[i] = a + one;
v[i] = b + one;
del(b);
add(a);
}
const int a = *st.begin();
add(a);
const int b = *st.begin();
u[n - 2] = a + one;
v[n - 2] = b + one;
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_tree(const int n, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(lower <= upper);
if(n == 0) return {{}, {}, {}};
const auto [u, v] = tree(n, one);
const vector<T> w = vec(n - 1, lower, upper, true);
return {u, v, w};
}
inline pair<vector<int>, vector<int>> graph(const int n, const int m, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
assert(0 <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
vector<int> u, v;
u.reserve(m);
v.reserve(m);
if(1ll * n * (n - 1) / 2 >= 2e6) {
set<pair<int, int>> edge;
while((int)edge.size() < m) {
const int a = this->operator()(0, n - 1);
const int b = this->operator()(0, n - 1);
if(a >= b) continue;
edge.insert({a, b});
}
for(const auto& [a, b] : edge) {
u.push_back(a + one);
v.push_back(b + one);
}
} else {
vector<pair<int, int>> edge;
edge.reserve(n * (n - 1) / 2);
for(int i = 0; i < n; ++i) {
for(int j = i + 1; j < n; ++j) {
edge.push_back({i, j});
}
}
const vector<int> p = perm(n * (n - 1) / 2, false);
for(int i = 0; i < m; ++i) {
u.push_back(edge[p[i]].first + one);
v.push_back(edge[p[i]].second + one);
}
}
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_graph(const int n, const int m, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(0 <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
assert(lower <= upper);
const auto [u, v] = graph(n, m, one);
const vector<T> w = vec(m, lower, upper, true);
return {u, v, w};
}
inline pair<vector<int>, vector<int>> connected_graph(const int n, const int m, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
assert(max(n - 1, 0) <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
if(n <= 1) return {{}, {}};
vector<int> u, v;
u.reserve(m);
v.reserve(m);
auto [ut, vt] = tree(n, false);
if(1ll * n * (n - 1) / 2 >= 2e6) {
set<pair<int, int>> edge;
for(int i = 0; i < n - 1; ++i) {
edge.insert({min(ut[i], vt[i]), max(ut[i], vt[i])});
}
while((int)edge.size() < m) {
const int a = this->operator()(0, n - 1);
const int b = this->operator()(0, n - 1);
if(a >= b) continue;
edge.insert({a, b});
}
for(const auto& [a, b] : edge) {
u.push_back(a + one);
v.push_back(b + one);
}
} else {
set<pair<int, int>> used;
for(int i = 0; i < n - 1; ++i) {
u.push_back(ut[i] + one);
v.push_back(vt[i] + one);
used.insert({min(ut[i], vt[i]), max(ut[i], vt[i])});
}
vector<pair<int, int>> edge;
edge.reserve(n * (n - 1) / 2 - (n - 1));
for(int i = 0; i < n; ++i) {
for(int j = i + 1; j < n; ++j) {
if(used.find({i, j}) == used.end()) edge.push_back({i, j});
}
}
const vector<int> p = perm(n * (n - 1) / 2 - (n - 1), false);
for(int i = 0; i < m - (n - 1); ++i) {
u.push_back(edge[p[i]].first + one);
v.push_back(edge[p[i]].second + one);
}
}
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_connected_graph(const int n, const int m, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(max(n - 1, 0) <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
assert(lower <= upper);
const auto [u, v] = connected_graph(n, m, one);
const vector<T> w = vec(m, lower, upper, true);
return {u, v, w};
}
inline string parenthesis(const int n) {
assert(0 <= n and n <= 1e8);
string res = "";
int N = n, M = n;
for(int i = 0; i < 2 * n; ++i) {
if(this->operator()(0.0l, 1.0l) > 1.0l * (N - M) * (N + 1) / ((N - M + 1) * (N + M))) {
res += "(";
--M;
} else {
res += ")";
--N;
}
}
return res;
}
private:
mt19937_64 mt;
} rng;
#line 3 "src/template/modint_2_61m1.hpp"
struct Modint_2_61m1 {
using mint = Modint_2_61m1;
using u64 = uint64_t;
using u128 = __uint128_t;
static constexpr u64 mod() {
return m;
}
static constexpr mint raw(const u64 v) {
mint a;
a._v = v;
return a;
}
constexpr Modint_2_61m1()
: _v(0) {}
template <class T>
constexpr Modint_2_61m1(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = u64(x);
} else _v = u64(v % m);
}
constexpr u64 val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(u64 n) const {
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
assert(_v);
return pow(m - 2);
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return raw(modulo(u128(lhs._v) * rhs._v));
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
static constexpr u64 m = (1ull << 61) - 1;
u64 _v = 0;
inline static constexpr u64 modulo(const u128& x) {
const u64 val = (x >> 61) + (x & m);
return val >= m ? val - m : val;
}
};
#line 3 "src/data_structure/fenwick_tree.hpp"
template <typename T>
struct FenwickTree {
FenwickTree(const int N)
: n(N), data(N) {}
void add(int p, const T& x) {
assert(0 <= p and p < n);
++p;
while(p <= n) {
data[p - 1] += x;
p += p & -p;
}
}
T sum(const int l, const int r) const {
assert(0 <= l and l <= r and r <= n);
return sum(r) - sum(l);
}
T get(const int x) const {
assert(0 <= x and x < n);
return sum(x + 1) - sum(x);
}
private:
int n;
vector<T> data;
inline T sum(int r) const {
T s = 0;
while(r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
#line 5 "src/string/dynamic_rolling_hash.hpp"
struct DynamicRollingHash {
using mint = Modint_2_61m1;
DynamicRollingHash(const string& s, unsigned long long BASE = 0)
: len((int)s.size()), pow(len + 1), inv_pow(len + 1), hash(len) {
if(BASE == 0) {
mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
uniform_int_distribution<unsigned long long> dist(1ull << 10, 1ull << 60);
BASE = dist(mt);
}
base = BASE;
pow[0] = 1;
for(int i = 0; i < len; ++i) {
pow[i + 1] = pow[i] * base;
}
inv = base.inv();
inv_pow[0] = 1;
for(int i = 0; i < len; ++i) {
inv_pow[i + 1] = inv_pow[i] * inv;
}
for(int i = 0; i < len; ++i) {
hash.add(i, pow[i] * s[i]);
}
}
unsigned long long get(const int lower, const int upper) const {
assert(0 <= lower and lower <= upper and upper <= len);
return (hash.sum(lower, upper) * inv_pow[lower]).val();
}
unsigned long long get_hash(const string& t) const {
mint res = 0;
for(int i = 0; i < (int)t.size(); ++i) {
res += pow[i] * t[i];
}
return res.val();
}
void set(const int idx, const char c) {
assert(0 <= idx and idx < len);
hash.add(idx, pow[idx] * c - hash.get(idx));
}
private:
int len;
mint base, inv;
vector<mint> pow, inv_pow;
FenwickTree<mint> hash;
};
#line 6 "verify/unit_test/string/dynamic_rolling_hash.test.cpp"
using mint = Modint_2_61m1;
void test() {
int n = rng(1, 2000), q = 2000;
string s = "";
rep(i, 0, n) {
s += 'a' + rng(0, 25);
}
ll base = rng(1ll << 10, 1ll << 60);
DynamicRollingHash drh(s, base);
while(q--) {
int type = rng(0, 1);
if(type == 0) {
int len = rng(0, n);
int l = rng(0, n - len), r = l + len;
mint ans = 0, b = 1;
rep(i, l, r) {
ans += b * s[i];
b *= base;
}
assert(drh.get(l, r) == ans.val());
} else {
int idx = rng(0, n - 1);
char c = 'a' + rng(0, 25);
s[idx] = c;
drh.set(idx, c);
}
}
}
int main(void) {
constexpr int test_num = 100;
rep(_, 0, test_num) {
test();
}
int a, b;
cin >> a >> b;
cout << a + b << '\n';
}