This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/string/dynamic_rolling_hash.hpp"
長さ $n$ の文字列 s
に対して,
を,前計算 $O(n \log n)$ クエリ $O(\log n)$ で行えるアルゴリズムです.
DynamicRollingHash drh(string s, ull BASE = 0)
長さ $n$ の文字列 s
に対する動的ローリングハッシュ,drh
を構築します.
法は $2^{61} - 1$ です.BASE
を指定しないときや $0$ を指定したとき,基数は乱数となります.
計算量
ull drh.get(int lower, int upper)
部分文字列 s[lower, upper)
のハッシュ値を返します.
制約
計算量
ull drh.get_hash(string t)
長さ $m$ の文字列 t
のハッシュ値を返します.
計算量
void drh.set(int idx, char c)
s[idx]
を c
に更新します.
制約
計算量
#pragma once
#include "../template/template.hpp"
#include "../template/modint_2_61m1.hpp"
#include "../data_structure/fenwick_tree.hpp"
struct DynamicRollingHash {
using mint = Modint_2_61m1;
DynamicRollingHash(const string& s, unsigned long long BASE = 0)
: len((int)s.size()), pow(len + 1), inv_pow(len + 1), hash(len) {
if(BASE == 0) {
mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
uniform_int_distribution<unsigned long long> dist(1ull << 10, 1ull << 60);
BASE = dist(mt);
}
base = BASE;
pow[0] = 1;
for(int i = 0; i < len; ++i) {
pow[i + 1] = pow[i] * base;
}
inv = base.inv();
inv_pow[0] = 1;
for(int i = 0; i < len; ++i) {
inv_pow[i + 1] = inv_pow[i] * inv;
}
for(int i = 0; i < len; ++i) {
hash.add(i, pow[i] * s[i]);
}
}
unsigned long long get(const int lower, const int upper) const {
assert(0 <= lower and lower <= upper and upper <= len);
return (hash.sum(lower, upper) * inv_pow[lower]).val();
}
unsigned long long get_hash(const string& t) const {
mint res = 0;
for(int i = 0; i < (int)t.size(); ++i) {
res += pow[i] * t[i];
}
return res.val();
}
void set(const int idx, const char c) {
assert(0 <= idx and idx < len);
hash.add(idx, pow[idx] * c - hash.get(idx));
}
private:
int len;
mint base, inv;
vector<mint> pow, inv_pow;
FenwickTree<mint> hash;
};
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/template/modint_2_61m1.hpp"
struct Modint_2_61m1 {
using mint = Modint_2_61m1;
using u64 = uint64_t;
using u128 = __uint128_t;
static constexpr u64 mod() {
return m;
}
static constexpr mint raw(const u64 v) {
mint a;
a._v = v;
return a;
}
constexpr Modint_2_61m1()
: _v(0) {}
template <class T>
constexpr Modint_2_61m1(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = u64(x);
} else _v = u64(v % m);
}
constexpr u64 val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(u64 n) const {
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
assert(_v);
return pow(m - 2);
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return raw(modulo(u128(lhs._v) * rhs._v));
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
static constexpr u64 m = (1ull << 61) - 1;
u64 _v = 0;
inline static constexpr u64 modulo(const u128& x) {
const u64 val = (x >> 61) + (x & m);
return val >= m ? val - m : val;
}
};
#line 3 "src/data_structure/fenwick_tree.hpp"
template <typename T>
struct FenwickTree {
FenwickTree(const int N)
: n(N), data(N) {}
void add(int p, const T& x) {
assert(0 <= p and p < n);
++p;
while(p <= n) {
data[p - 1] += x;
p += p & -p;
}
}
T sum(const int l, const int r) const {
assert(0 <= l and l <= r and r <= n);
return sum(r) - sum(l);
}
T get(const int x) const {
assert(0 <= x and x < n);
return sum(x + 1) - sum(x);
}
private:
int n;
vector<T> data;
inline T sum(int r) const {
T s = 0;
while(r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
#line 5 "src/string/dynamic_rolling_hash.hpp"
struct DynamicRollingHash {
using mint = Modint_2_61m1;
DynamicRollingHash(const string& s, unsigned long long BASE = 0)
: len((int)s.size()), pow(len + 1), inv_pow(len + 1), hash(len) {
if(BASE == 0) {
mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
uniform_int_distribution<unsigned long long> dist(1ull << 10, 1ull << 60);
BASE = dist(mt);
}
base = BASE;
pow[0] = 1;
for(int i = 0; i < len; ++i) {
pow[i + 1] = pow[i] * base;
}
inv = base.inv();
inv_pow[0] = 1;
for(int i = 0; i < len; ++i) {
inv_pow[i + 1] = inv_pow[i] * inv;
}
for(int i = 0; i < len; ++i) {
hash.add(i, pow[i] * s[i]);
}
}
unsigned long long get(const int lower, const int upper) const {
assert(0 <= lower and lower <= upper and upper <= len);
return (hash.sum(lower, upper) * inv_pow[lower]).val();
}
unsigned long long get_hash(const string& t) const {
mint res = 0;
for(int i = 0; i < (int)t.size(); ++i) {
res += pow[i] * t[i];
}
return res.val();
}
void set(const int idx, const char c) {
assert(0 <= idx and idx < len);
hash.add(idx, pow[idx] * c - hash.get(idx));
}
private:
int len;
mint base, inv;
vector<mint> pow, inv_pow;
FenwickTree<mint> hash;
};