This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"
#include "../../../src/template/template.hpp"
#include "../../../src/template/static_modint.hpp"
#include "../../../src/graph/graph_template.hpp"
#include "../../../src/tree/heavy_light_decomposition.hpp"
#include "../../../src/data_structure/segment_tree.hpp"
using mint = modint998244353;
struct S {
mint a, b;
};
S op1(S x, S y) {
return {x.a * y.a, x.b * y.a + y.b};
}
S op2(S x, S y) {
return {x.a * y.a, y.b * x.a + x.b};
}
S e() {
return {1, 0};
}
int main(void) {
int n, q;
cin >> n >> q;
vector<ll> a(n), b(n);
rep(i, 0, n) {
cin >> a[i] >> b[i];
}
Graph<int> g(n);
rep(i, 0, n - 1) {
int u, v;
cin >> u >> v;
g.add_edge(u, v);
}
HeavyLightDecomposition<int> hld(g);
SegmentTree<S, op1, e> seg1(n);
SegmentTree<S, op2, e> seg2(n);
rep(i, 0, n) {
seg1.set(hld.idx(i).first, {a[i], b[i]});
seg2.set(hld.idx(i).first, {a[i], b[i]});
}
while(q--) {
int t;
cin >> t;
if(t == 0) {
int p;
mint c, d;
cin >> p >> c >> d;
seg1.set(hld.idx(p).first, {c, d});
seg2.set(hld.idx(p).first, {c, d});
} else {
int u, v;
mint x;
cin >> u >> v >> x;
mint ans = x;
auto query = [&](int u, int v) -> void {
if(u <= v) {
S res = seg1.prod(u, v);
ans = res.a * ans + res.b;
} else {
S res = seg2.prod(v, u);
ans = res.a * ans + res.b;
}
};
hld.path_query(u, v, true, query);
cout << ans << '\n';
}
}
}
#line 1 "verify/library_checker/tree/vertex_set_path_composite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/template/static_modint.hpp"
template <uint32_t m>
struct StaticModint {
using mint = StaticModint;
static constexpr uint32_t mod() {
return m;
}
static constexpr mint raw(const uint32_t v) {
mint a;
a._v = v;
return a;
}
constexpr StaticModint()
: _v(0) {}
template <class T>
constexpr StaticModint(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = uint32_t(x);
} else _v = uint32_t(v % m);
}
constexpr uint32_t val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(long long n) const {
assert(0 <= n);
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
if constexpr(prime) {
assert(_v);
return pow(m - 2);
} else {
const auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return uint64_t(lhs._v) * rhs._v;
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
uint32_t _v = 0;
static constexpr bool prime = []() -> bool {
if(m == 1) return 0;
if(m == 2 or m == 7 or m == 61) return 1;
if(m % 2 == 0) return 0;
uint32_t d = m - 1;
while(d % 2 == 0) d /= 2;
for(uint32_t a : {2, 7, 61}) {
uint32_t t = d;
mint y = mint(a).pow(t);
while(t != m - 1 && y != 1 && y != m - 1) {
y *= y;
t <<= 1;
}
if(y != m - 1 && t % 2 == 0) return 0;
}
return 1;
}();
static constexpr pair<int32_t, int32_t> inv_gcd(const int32_t a, const int32_t b) {
if(a == 0) return {b, 0};
int32_t s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const int32_t u = s / t;
s -= t * u;
m0 -= m1 * u;
swap(s, t);
swap(m0, m1);
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
};
using modint998244353 = StaticModint<998244353>;
using modint1000000007 = StaticModint<1000000007>;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 4 "src/tree/heavy_light_decomposition.hpp"
template <typename T>
struct HeavyLightDecomposition {
HeavyLightDecomposition(Graph<T>& _g, const int root = 0)
: g(_g), n(g.size()), id(0), sz(n, 0), dep(n, 0), down(n, -1), up(n, -1), nex(n, root), par(n, -1), rev(n, 0), co(n, 0) {
assert(0 <= root and root < n);
dfs_sz(root);
dfs_hld(root);
}
pair<int, int> idx(const int i) const {
assert(0 <= i and i < n);
return make_pair(down[i], up[i]);
}
int depth(const int v) const {
assert(0 <= v and v < n);
return dep[v];
}
T cost(const int v) const {
assert(0 <= v and v < n);
return co[v];
}
int parent(const int v) const {
assert(0 <= v and v < n);
return par[v];
}
int la(int v, int x) const {
assert(0 <= v and v < n);
assert(x >= 0);
if(x > dep[v]) return -1;
while(true) {
const int u = nex[v];
if(down[v] - x >= down[u]) return rev[down[v] - x];
x -= down[v] - down[u] + 1;
v = par[u];
}
}
int lca(int u, int v) const {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
while(nex[u] != nex[v]) {
if(down[u] < down[v]) swap(u, v);
u = par[nex[u]];
}
return dep[u] < dep[v] ? u : v;
}
int dist(const int u, const int v) const {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
return dep[u] + dep[v] - dep[lca(u, v)] * 2;
}
T length(const int u, const int v) const {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
return co[u] + co[v] - co[lca(u, v)] * 2;
}
template <typename F>
void path_query(const int u, const int v, const bool vertex, const F& f) {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
const int l = lca(u, v);
for(auto&& [a, b] : ascend(u, l)) f(a + 1, b);
if(vertex) f(down[l], down[l] + 1);
for(auto&& [a, b] : descend(l, v)) f(a, b + 1);
}
template <typename F>
void subtree_query(const int v, const bool vertex, const F& f) {
assert(0 <= v and v < n);
f(down[v] + int(!vertex), up[v]);
}
private:
Graph<T>& g;
int n, id;
vector<int> sz, dep, down, up, nex, par, rev;
vector<T> co;
void dfs_sz(const int cur) {
sz[cur] = 1;
for(Edge<T>& edge : g[cur]) {
if(edge.to == par[cur]) {
if(g[cur].size() >= 2 and edge.to == g[cur][0].to) {
swap(g[cur][0], g[cur][1]);
} else {
continue;
}
}
dep[edge.to] = dep[cur] + 1;
co[edge.to] = co[cur] + edge.cost;
par[edge.to] = cur;
dfs_sz(edge.to);
sz[cur] += sz[edge.to];
if(sz[edge.to] > sz[g[cur][0].to]) {
swap(edge, g[cur][0]);
}
}
}
void dfs_hld(const int cur) {
down[cur] = id++;
rev[down[cur]] = cur;
for(const Edge<T>& edge : g[cur]) {
if(edge.to == par[cur]) continue;
nex[edge.to] = (edge.to == g[cur][0].to ? nex[cur] : edge.to);
dfs_hld(edge.to);
}
up[cur] = id;
}
vector<pair<int, int>> ascend(int u, int v) const {
vector<pair<int, int>> res;
while(nex[u] != nex[v]) {
res.emplace_back(down[u], down[nex[u]]);
u = par[nex[u]];
}
if(u != v) res.emplace_back(down[u], down[v] + 1);
return res;
}
vector<pair<int, int>> descend(const int u, const int v) const {
if(u == v) return {};
if(nex[u] == nex[v]) return {{down[u] + 1, down[v]}};
auto res = descend(u, par[nex[v]]);
res.emplace_back(down[nex[v]], down[v]);
return res;
}
};
#line 3 "src/data_structure/segment_tree.hpp"
template <typename S, auto op, auto e>
struct SegmentTree {
SegmentTree(const int N)
: SegmentTree(vector<S>(N, e())) {}
SegmentTree(const vector<S>& v)
: n((int)v.size()) {
size = bit_ceil((unsigned int)n);
log = countr_zero((unsigned int)size);
data = vector<S>(2 * size, e());
for(int i = 0; i < n; ++i) {
data[size + i] = v[i];
}
for(int i = size - 1; i >= 1; --i) {
update(i);
}
}
void set(int p, const S& x) {
assert(0 <= p and p < n);
p += size;
data[p] = x;
for(int i = 1; i <= log; ++i) {
update(p >> i);
}
}
S get(const int p) const {
assert(0 <= p and p < n);
return data[p + size];
}
S prod(int l, int r) const {
assert(0 <= l and l <= r and r <= n);
S sml = e(), smr = e();
l += size;
r += size;
while(l < r) {
if(l & 1) sml = op(sml, data[l++]);
if(r & 1) smr = op(data[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const {
return data[1];
}
template <bool (*f)(S)>
int max_right(const int l) const {
return max_right(l, [](const S& x) { return f(x); });
}
template <class F>
int max_right(int l, const F& f) const {
assert(0 <= l and l <= n);
assert(f(e()));
if(l == n) return n;
l += size;
S sm = e();
do {
while(l % 2 == 0) l >>= 1;
if(!f(op(sm, data[l]))) {
while(l < size) {
l = l * 2;
if(f(op(sm, data[l]))) {
sm = op(sm, data[l]);
++l;
}
}
return l - size;
}
sm = op(sm, data[l]);
++l;
} while((l & -l) != l);
return n;
}
template <bool (*f)(S)>
int min_left(const int r) const {
return min_left(r, [](const S& x) { return f(x); });
}
template <class F>
int min_left(int r, const F& f) const {
assert(0 <= r and r <= n);
assert(f(e()));
if(r == 0) return 0;
r += size;
S sm = e();
do {
--r;
while(r > 1 and (r % 2)) r >>= 1;
if(!f(op(data[r], sm))) {
while(r < size) {
r = 2 * r + 1;
if(f(op(data[r], sm))) {
sm = op(data[r], sm);
--r;
}
}
return r + 1 - size;
}
sm = op(data[r], sm);
} while((r & -r) != r);
return 0;
}
private:
int n, size, log;
vector<S> data;
inline void update(const int k) {
data[k] = op(data[2 * k], data[2 * k + 1]);
}
inline unsigned int bit_ceil(const unsigned int n) const {
unsigned int res = 1;
while(res < n) res *= 2;
return res;
}
inline int countr_zero(const unsigned int n) const {
return __builtin_ctz(n);
}
};
#line 7 "verify/library_checker/tree/vertex_set_path_composite.test.cpp"
using mint = modint998244353;
struct S {
mint a, b;
};
S op1(S x, S y) {
return {x.a * y.a, x.b * y.a + y.b};
}
S op2(S x, S y) {
return {x.a * y.a, y.b * x.a + x.b};
}
S e() {
return {1, 0};
}
int main(void) {
int n, q;
cin >> n >> q;
vector<ll> a(n), b(n);
rep(i, 0, n) {
cin >> a[i] >> b[i];
}
Graph<int> g(n);
rep(i, 0, n - 1) {
int u, v;
cin >> u >> v;
g.add_edge(u, v);
}
HeavyLightDecomposition<int> hld(g);
SegmentTree<S, op1, e> seg1(n);
SegmentTree<S, op2, e> seg2(n);
rep(i, 0, n) {
seg1.set(hld.idx(i).first, {a[i], b[i]});
seg2.set(hld.idx(i).first, {a[i], b[i]});
}
while(q--) {
int t;
cin >> t;
if(t == 0) {
int p;
mint c, d;
cin >> p >> c >> d;
seg1.set(hld.idx(p).first, {c, d});
seg2.set(hld.idx(p).first, {c, d});
} else {
int u, v;
mint x;
cin >> u >> v >> x;
mint ans = x;
auto query = [&](int u, int v) -> void {
if(u <= v) {
S res = seg1.prod(u, v);
ans = res.a * ans + res.b;
} else {
S res = seg2.prod(v, u);
ans = res.a * ans + res.b;
}
};
hld.path_query(u, v, true, query);
cout << ans << '\n';
}
}
}