This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/math/primitive_root.hpp"
int primitive_root(int m)
$m$ の原始根を返します.
制約
計算量
#pragma once
#include "../template/template.hpp"
#include "./pow_mod.hpp"
constexpr int primitive_root(const int m) {
if(m == 2) return 1;
if(m == 167772161) return 3;
if(m == 469762049) return 3;
if(m == 754974721) return 11;
if(m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while(x % 2 == 0) x /= 2;
for(int i = 3; (long long)(i)*i <= x; i += 2) {
if(x % i == 0) {
divs[cnt++] = i;
while(x % i == 0) {
x /= i;
}
}
}
if(x > 1) {
divs[cnt++] = x;
}
for(int g = 2;; ++g) {
bool ok = true;
for(int i = 0; i < cnt; ++i) {
if(pow_mod(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if(ok) return g;
}
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/math/pow_mod.hpp"
constexpr long long pow_mod(long long x, long long n, const long long mod) {
assert(n >= 0 and mod >= 1);
x %= mod;
if(x < 0) x += mod;
long long res = 1;
while(n > 0) {
if(n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
#line 4 "src/math/primitive_root.hpp"
constexpr int primitive_root(const int m) {
if(m == 2) return 1;
if(m == 167772161) return 3;
if(m == 469762049) return 3;
if(m == 754974721) return 11;
if(m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while(x % 2 == 0) x /= 2;
for(int i = 3; (long long)(i)*i <= x; i += 2) {
if(x % i == 0) {
divs[cnt++] = i;
while(x % i == 0) {
x /= i;
}
}
}
if(x > 1) {
divs[cnt++] = x;
}
for(int g = 2;; ++g) {
bool ok = true;
for(int i = 0; i < cnt; ++i) {
if(pow_mod(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if(ok) return g;
}
}