This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/convolution/convolution.hpp"
vector<mint> convolution(vector<mint> a, vector<mint> b)
畳み込みを行います.
数列 $a_0, a_1, \cdots, a_{N - 1}$ と数列 $b_0, b_1, \cdots, b_{M - 1}$ から,長さ $N + M - 1$ の数列
を計算します.
$a$ または $b$ が空配列の場合は空配列を返します.
制約
mint
の法を $m$ として,
計算量
$n = N + M$ として,
void butterfly(vector<mint>& a)
a
のNumber-Theoretic Transformを計算します.
参照渡しであることに注意してください.
制約
mint
の法 $m$ が NTT-friendlyである計算量
void butterfly_inv(vector<mint>& a)
a
のInverse Number-Theoretic Transformを計算します.
参照渡しであることに注意してください.
制約
mint
の法 $m$ が NTT-friendlyである.計算量
#pragma once
#include "../template/template.hpp"
#include "../math/primitive_root.hpp"
constexpr int countr_zero(const unsigned int n) {
int res = 0;
while(!(n & (1 << res))) ++res;
return res;
}
template <typename mint, int g = primitive_root(mint::mod())>
struct FFT_Info {
static constexpr int rank2 = countr_zero(mint::mod() - 1);
array<mint, rank2 + 1> root;
array<mint, rank2 + 1> iroot;
array<mint, max(0, rank2 - 2 + 1)> rate2;
array<mint, max(0, rank2 - 2 + 1)> irate2;
array<mint, max(0, rank2 - 3 + 1)> rate3;
array<mint, max(0, rank2 - 3 + 1)> irate3;
FFT_Info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for(int i = rank2 - 1; i >= 0; --i) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for(int i = 0; i <= rank2 - 2; ++i) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for(int i = 0; i <= rank2 - 3; ++i) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <typename mint>
void butterfly(vector<mint>& a) {
const int n = (int)a.size();
const int h = __builtin_ctz((unsigned int)n);
static const FFT_Info<mint> info;
int len = 0;
while(len < h) {
if(h - len == 1) {
const int p = 1 << (h - len - 1);
mint rot = 1;
for(int s = 0; s < (1 << len); ++s) {
const int offset = s << (h - len);
for(int i = 0; i < p; ++i) {
const auto l = a[i + offset];
const auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if(s + 1 != (1 << len)) rot *= info.rate2[__builtin_ctz(~(unsigned int)(s))];
}
++len;
} else {
const int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for(int s = 0; s < (1 << len); ++s) {
const mint rot2 = rot * rot;
const mint rot3 = rot2 * rot;
const int offset = s << (h - len);
for(int i = 0; i < p; ++i) {
const auto mod2 = 1ULL * mint::mod() * mint::mod();
const auto a0 = 1ULL * a[i + offset].val();
const auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
const auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
const auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
const auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val();
const auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if(s + 1 != (1 << len)) rot *= info.rate3[__builtin_ctz(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <typename mint>
void butterfly_inv(vector<mint>& a) {
const int n = (int)a.size();
const int h = __builtin_ctz((unsigned int)n);
static const FFT_Info<mint> info;
int len = h;
while(len) {
if(len == 1) {
const int p = 1 << (h - len);
mint irot = 1;
for(int s = 0; s < (1 << (len - 1)); ++s) {
const int offset = s << (h - len + 1);
for(int i = 0; i < p; ++i) {
const auto l = a[i + offset];
const auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * irot.val();
}
if(s + 1 != (1 << (len - 1))) irot *= info.irate2[__builtin_ctz(~(unsigned int)(s))];
}
--len;
} else {
const int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for(int s = 0; s < (1 << (len - 2)); ++s) {
const mint irot2 = irot * irot;
const mint irot3 = irot2 * irot;
const int offset = s << (h - len + 2);
for(int i = 0; i < p; ++i) {
const auto a0 = 1ULL * a[i + offset + 0 * p].val();
const auto a1 = 1ULL * a[i + offset + 1 * p].val();
const auto a2 = 1ULL * a[i + offset + 2 * p].val();
const auto a3 = 1ULL * a[i + offset + 3 * p].val();
const auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val();
a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.val();
}
if(s + 1 != (1 << (len - 2))) irot *= info.irate3[__builtin_ctz(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <typename mint>
vector<mint> convolution_naive(const vector<mint>& a, const vector<mint>& b) {
const int n = (int)a.size(), m = (int)b.size();
vector<mint> res(n + m - 1);
if(n < m) {
for(int j = 0; j < m; ++j) {
for(int i = 0; i < n; ++i) {
res[i + j] += a[i] * b[j];
}
}
} else {
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
res[i + j] += a[i] * b[j];
}
}
}
return res;
}
template <typename mint>
vector<mint> convolution(vector<mint> a, vector<mint> b) {
const int n = (int)a.size(), m = (int)b.size();
if(n == 0 or m == 0) return {};
int z = 1;
while(z < n + m - 1) z *= 2;
assert((mint::mod() - 1) % z == 0);
if(min(n, m) <= 60) return convolution_naive(a, b);
a.resize(z);
b.resize(z);
butterfly(a);
butterfly(b);
for(int i = 0; i < z; ++i) a[i] *= b[i];
butterfly_inv(a);
a.resize(n + m - 1);
const mint iz = mint(z).inv();
for(int i = 0; i < n + m - 1; ++i) a[i] *= iz;
return a;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/math/pow_mod.hpp"
constexpr long long pow_mod(long long x, long long n, const long long mod) {
assert(n >= 0 and mod >= 1);
x %= mod;
if(x < 0) x += mod;
long long res = 1;
while(n > 0) {
if(n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
#line 4 "src/math/primitive_root.hpp"
constexpr int primitive_root(const int m) {
if(m == 2) return 1;
if(m == 167772161) return 3;
if(m == 469762049) return 3;
if(m == 754974721) return 11;
if(m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while(x % 2 == 0) x /= 2;
for(int i = 3; (long long)(i)*i <= x; i += 2) {
if(x % i == 0) {
divs[cnt++] = i;
while(x % i == 0) {
x /= i;
}
}
}
if(x > 1) {
divs[cnt++] = x;
}
for(int g = 2;; ++g) {
bool ok = true;
for(int i = 0; i < cnt; ++i) {
if(pow_mod(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if(ok) return g;
}
}
#line 4 "src/convolution/convolution.hpp"
constexpr int countr_zero(const unsigned int n) {
int res = 0;
while(!(n & (1 << res))) ++res;
return res;
}
template <typename mint, int g = primitive_root(mint::mod())>
struct FFT_Info {
static constexpr int rank2 = countr_zero(mint::mod() - 1);
array<mint, rank2 + 1> root;
array<mint, rank2 + 1> iroot;
array<mint, max(0, rank2 - 2 + 1)> rate2;
array<mint, max(0, rank2 - 2 + 1)> irate2;
array<mint, max(0, rank2 - 3 + 1)> rate3;
array<mint, max(0, rank2 - 3 + 1)> irate3;
FFT_Info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for(int i = rank2 - 1; i >= 0; --i) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for(int i = 0; i <= rank2 - 2; ++i) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for(int i = 0; i <= rank2 - 3; ++i) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <typename mint>
void butterfly(vector<mint>& a) {
const int n = (int)a.size();
const int h = __builtin_ctz((unsigned int)n);
static const FFT_Info<mint> info;
int len = 0;
while(len < h) {
if(h - len == 1) {
const int p = 1 << (h - len - 1);
mint rot = 1;
for(int s = 0; s < (1 << len); ++s) {
const int offset = s << (h - len);
for(int i = 0; i < p; ++i) {
const auto l = a[i + offset];
const auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if(s + 1 != (1 << len)) rot *= info.rate2[__builtin_ctz(~(unsigned int)(s))];
}
++len;
} else {
const int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for(int s = 0; s < (1 << len); ++s) {
const mint rot2 = rot * rot;
const mint rot3 = rot2 * rot;
const int offset = s << (h - len);
for(int i = 0; i < p; ++i) {
const auto mod2 = 1ULL * mint::mod() * mint::mod();
const auto a0 = 1ULL * a[i + offset].val();
const auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
const auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
const auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
const auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val();
const auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if(s + 1 != (1 << len)) rot *= info.rate3[__builtin_ctz(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <typename mint>
void butterfly_inv(vector<mint>& a) {
const int n = (int)a.size();
const int h = __builtin_ctz((unsigned int)n);
static const FFT_Info<mint> info;
int len = h;
while(len) {
if(len == 1) {
const int p = 1 << (h - len);
mint irot = 1;
for(int s = 0; s < (1 << (len - 1)); ++s) {
const int offset = s << (h - len + 1);
for(int i = 0; i < p; ++i) {
const auto l = a[i + offset];
const auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * irot.val();
}
if(s + 1 != (1 << (len - 1))) irot *= info.irate2[__builtin_ctz(~(unsigned int)(s))];
}
--len;
} else {
const int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for(int s = 0; s < (1 << (len - 2)); ++s) {
const mint irot2 = irot * irot;
const mint irot3 = irot2 * irot;
const int offset = s << (h - len + 2);
for(int i = 0; i < p; ++i) {
const auto a0 = 1ULL * a[i + offset + 0 * p].val();
const auto a1 = 1ULL * a[i + offset + 1 * p].val();
const auto a2 = 1ULL * a[i + offset + 2 * p].val();
const auto a3 = 1ULL * a[i + offset + 3 * p].val();
const auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val();
a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.val();
}
if(s + 1 != (1 << (len - 2))) irot *= info.irate3[__builtin_ctz(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <typename mint>
vector<mint> convolution_naive(const vector<mint>& a, const vector<mint>& b) {
const int n = (int)a.size(), m = (int)b.size();
vector<mint> res(n + m - 1);
if(n < m) {
for(int j = 0; j < m; ++j) {
for(int i = 0; i < n; ++i) {
res[i + j] += a[i] * b[j];
}
}
} else {
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
res[i + j] += a[i] * b[j];
}
}
}
return res;
}
template <typename mint>
vector<mint> convolution(vector<mint> a, vector<mint> b) {
const int n = (int)a.size(), m = (int)b.size();
if(n == 0 or m == 0) return {};
int z = 1;
while(z < n + m - 1) z *= 2;
assert((mint::mod() - 1) % z == 0);
if(min(n, m) <= 60) return convolution_naive(a, b);
a.resize(z);
b.resize(z);
butterfly(a);
butterfly(b);
for(int i = 0; i < z; ++i) a[i] *= b[i];
butterfly_inv(a);
a.resize(n + m - 1);
const mint iz = mint(z).inv();
for(int i = 0; i < n + m - 1; ++i) a[i] *= iz;
return a;
}