This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "../../../src/template/template.hpp"
#include "../../../src/random/random_number_generator.hpp"
#include "../../../src/template/static_modint.hpp"
using mint = modint998244353;
#include "../../../src/graph/graph_template.hpp"
#include "../../../src/tree/auxiliary_tree.hpp"
// ABC340-G
void test() {
int n = rng(1, 500);
int ma = rng(1, n);
vector<int> a = rng.vec(n, 1, ma, true);
auto [u, v] = rng.tree(n, true);
auto brute = [&](int n, vector<int> a, vector<int> u, vector<int> v) -> mint {
rep(i, 0, n) {
a[i]--;
}
Graph<int> g(n);
rep(i, 0, n - 1) {
u[i]--;
v[i]--;
g.add_edge(u[i], v[i]);
}
mint ans = 0;
rep(i, 0, n) {
map<int, mint> dp1, dp2;
auto dfs = [&](auto& dfs, int cur, int p) -> void {
dp1[cur] = 1;
dp2[cur] = 1;
for(const auto& e : g[cur]) {
if(e.to == p) continue;
dfs(dfs, e.to, cur);
dp1[cur] *= dp2[e.to] + 1;
dp2[cur] *= dp2[e.to] + 1;
}
if(a[cur] != i) {
for(const auto& e : g[cur]) {
if(e.to == p) continue;
dp1[cur] -= dp2[e.to];
}
dp1[cur]--;
dp2[cur]--;
}
ans += dp1[cur];
};
dfs(dfs, 0, -1);
}
return ans;
};
auto fast = [&](int n, vector<int> a, vector<int> u, vector<int> v) -> mint {
vector<vector<int>> col(n);
rep(i, 0, n) {
a[i]--;
col[a[i]].push_back(i);
}
Graph<int> g(n);
rep(i, 0, n - 1) {
u[i]--;
v[i]--;
g.add_edge(u[i], v[i]);
}
AuxiliaryTree<int> aux(g);
mint ans = 0;
rep(i, 0, n) {
if(col[i].empty()) continue;
auto [tree, idx] = aux.get(col[i]);
map<int, mint> dp1, dp2;
auto dfs = [&](auto& dfs, int cur, int p) -> void {
dp1[cur] = 1;
dp2[cur] = 1;
for(const auto& e : tree[cur]) {
if(e.to == p) continue;
dfs(dfs, e.to, cur);
dp1[cur] *= dp2[e.to] + 1;
dp2[cur] *= dp2[e.to] + 1;
}
if(a[idx[cur]] != i) {
for(const auto& e : tree[cur]) {
if(e.to == p) continue;
dp1[cur] -= dp2[e.to];
}
dp1[cur]--;
dp2[cur]--;
}
ans += dp1[cur];
};
dfs(dfs, 0, -1);
}
return ans;
};
assert(brute(n, a, u, v) == fast(n, a, u, v));
}
int main(void) {
constexpr int test_num = 100;
rep(i, 0, test_num) {
test();
}
int a, b;
cin >> a >> b;
cout << a + b << '\n';
}
#line 1 "verify/unit_test/tree/auxiliary_tree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/random/random_number_generator.hpp"
struct RandomNumberGenerator {
RandomNumberGenerator()
: mt(chrono::steady_clock::now().time_since_epoch().count()) {}
template <typename T>
inline T operator()(const T lower, const T upper) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(lower <= upper);
if constexpr(is_integral_v<T>) {
uniform_int_distribution<T> dist(lower, upper);
return dist(mt);
} else if constexpr(is_floating_point_v<T>) {
uniform_real_distribution<T> dist(lower, upper);
return dist(mt);
}
}
template <typename T>
inline vector<T> vec(const int n, const T lower, const T upper, const bool dup = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(lower <= upper);
if(n == 0) return {};
vector<T> res(n);
if(dup or is_floating_point_v<T>) {
for(int i = 0; i < n; ++i) res[i] = this->operator()(lower, upper);
} else {
assert(upper - lower + 1 >= n);
if(upper - lower + 1 >= 2 * n) {
set<T> used;
while((int)used.size() < n) {
const T a = this->operator()(lower, upper);
used.insert(a);
}
int i = 0;
for(const T a : used) {
res[i] = a;
++i;
}
} else {
const vector<int> p = perm(upper - lower + 1, false);
for(int i = 0; i < n; ++i) {
res[i] = p[i] + lower;
}
}
}
return res;
}
inline vector<int> perm(const int n, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
vector<int> res(n);
for(int i = 0; i < n; ++i) res[i] = i + one;
for(int i = n - 1; i > 0; --i) {
swap(res[i], res[this->operator()(0, i)]);
}
return res;
}
inline pair<vector<int>, vector<int>> tree(const int n, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
if(n <= 1) return {{}, {}};
if(n == 2) return {{0 + one}, {1 + one}};
vector<int> u(n - 1), v(n - 1);
const vector<int> pruefer = vec(n - 2, 0, n - 1);
set<int> st;
vector<int> cnt(n);
for(int i = 0; i < n; ++i) st.insert(i);
auto add = [&](const int x) -> void {
if(x > n) return;
if(cnt[x] == 0) st.erase(x);
++cnt[x];
};
auto del = [&](const int x) -> void {
if(x > n) return;
--cnt[x];
if(cnt[x] == 0) st.insert(x);
};
for(int i = 0; i < n - 2; ++i) add(pruefer[i]);
for(int i = 0; i < n - 2; ++i) {
const int a = *st.begin();
const int b = pruefer[i];
u[i] = a + one;
v[i] = b + one;
del(b);
add(a);
}
const int a = *st.begin();
add(a);
const int b = *st.begin();
u[n - 2] = a + one;
v[n - 2] = b + one;
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_tree(const int n, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(lower <= upper);
if(n == 0) return {{}, {}, {}};
const auto [u, v] = tree(n, one);
const vector<T> w = vec(n - 1, lower, upper, true);
return {u, v, w};
}
inline pair<vector<int>, vector<int>> graph(const int n, const int m, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
assert(0 <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
vector<int> u, v;
u.reserve(m);
v.reserve(m);
if(1ll * n * (n - 1) / 2 >= 2e6) {
set<pair<int, int>> edge;
while((int)edge.size() < m) {
const int a = this->operator()(0, n - 1);
const int b = this->operator()(0, n - 1);
if(a >= b) continue;
edge.insert({a, b});
}
for(const auto& [a, b] : edge) {
u.push_back(a + one);
v.push_back(b + one);
}
} else {
vector<pair<int, int>> edge;
edge.reserve(n * (n - 1) / 2);
for(int i = 0; i < n; ++i) {
for(int j = i + 1; j < n; ++j) {
edge.push_back({i, j});
}
}
const vector<int> p = perm(n * (n - 1) / 2, false);
for(int i = 0; i < m; ++i) {
u.push_back(edge[p[i]].first + one);
v.push_back(edge[p[i]].second + one);
}
}
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_graph(const int n, const int m, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(0 <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
assert(lower <= upper);
const auto [u, v] = graph(n, m, one);
const vector<T> w = vec(m, lower, upper, true);
return {u, v, w};
}
inline pair<vector<int>, vector<int>> connected_graph(const int n, const int m, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
assert(max(n - 1, 0) <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
if(n <= 1) return {{}, {}};
vector<int> u, v;
u.reserve(m);
v.reserve(m);
auto [ut, vt] = tree(n, false);
if(1ll * n * (n - 1) / 2 >= 2e6) {
set<pair<int, int>> edge;
for(int i = 0; i < n - 1; ++i) {
edge.insert({min(ut[i], vt[i]), max(ut[i], vt[i])});
}
while((int)edge.size() < m) {
const int a = this->operator()(0, n - 1);
const int b = this->operator()(0, n - 1);
if(a >= b) continue;
edge.insert({a, b});
}
for(const auto& [a, b] : edge) {
u.push_back(a + one);
v.push_back(b + one);
}
} else {
set<pair<int, int>> used;
for(int i = 0; i < n - 1; ++i) {
u.push_back(ut[i] + one);
v.push_back(vt[i] + one);
used.insert({min(ut[i], vt[i]), max(ut[i], vt[i])});
}
vector<pair<int, int>> edge;
edge.reserve(n * (n - 1) / 2 - (n - 1));
for(int i = 0; i < n; ++i) {
for(int j = i + 1; j < n; ++j) {
if(used.find({i, j}) == used.end()) edge.push_back({i, j});
}
}
const vector<int> p = perm(n * (n - 1) / 2 - (n - 1), false);
for(int i = 0; i < m - (n - 1); ++i) {
u.push_back(edge[p[i]].first + one);
v.push_back(edge[p[i]].second + one);
}
}
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_connected_graph(const int n, const int m, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(max(n - 1, 0) <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
assert(lower <= upper);
const auto [u, v] = connected_graph(n, m, one);
const vector<T> w = vec(m, lower, upper, true);
return {u, v, w};
}
inline string parenthesis(const int n) {
assert(0 <= n and n <= 1e8);
string res = "";
int N = n, M = n;
for(int i = 0; i < 2 * n; ++i) {
if(this->operator()(0.0l, 1.0l) > 1.0l * (N - M) * (N + 1) / ((N - M + 1) * (N + M))) {
res += "(";
--M;
} else {
res += ")";
--N;
}
}
return res;
}
private:
mt19937_64 mt;
} rng;
#line 3 "src/template/static_modint.hpp"
template <uint32_t m>
struct StaticModint {
using mint = StaticModint;
static constexpr uint32_t mod() {
return m;
}
static constexpr mint raw(const uint32_t v) {
mint a;
a._v = v;
return a;
}
constexpr StaticModint()
: _v(0) {}
template <class T>
constexpr StaticModint(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = uint32_t(x);
} else _v = uint32_t(v % m);
}
constexpr uint32_t val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(long long n) const {
assert(0 <= n);
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
if constexpr(prime) {
assert(_v);
return pow(m - 2);
} else {
const auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return uint64_t(lhs._v) * rhs._v;
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
uint32_t _v = 0;
static constexpr bool prime = []() -> bool {
if(m == 1) return 0;
if(m == 2 or m == 7 or m == 61) return 1;
if(m % 2 == 0) return 0;
uint32_t d = m - 1;
while(d % 2 == 0) d /= 2;
for(uint32_t a : {2, 7, 61}) {
uint32_t t = d;
mint y = mint(a).pow(t);
while(t != m - 1 && y != 1 && y != m - 1) {
y *= y;
t <<= 1;
}
if(y != m - 1 && t % 2 == 0) return 0;
}
return 1;
}();
static constexpr pair<int32_t, int32_t> inv_gcd(const int32_t a, const int32_t b) {
if(a == 0) return {b, 0};
int32_t s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const int32_t u = s / t;
s -= t * u;
m0 -= m1 * u;
swap(s, t);
swap(m0, m1);
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
};
using modint998244353 = StaticModint<998244353>;
using modint1000000007 = StaticModint<1000000007>;
#line 5 "verify/unit_test/tree/auxiliary_tree.test.cpp"
using mint = modint998244353;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 4 "src/tree/heavy_light_decomposition.hpp"
template <typename T>
struct HeavyLightDecomposition {
HeavyLightDecomposition(Graph<T>& _g, const int root = 0)
: g(_g), n(g.size()), id(0), sz(n, 0), dep(n, 0), down(n, -1), up(n, -1), nex(n, root), par(n, -1), rev(n, 0), co(n, 0) {
assert(0 <= root and root < n);
dfs_sz(root);
dfs_hld(root);
}
pair<int, int> idx(const int i) const {
assert(0 <= i and i < n);
return make_pair(down[i], up[i]);
}
int depth(const int v) const {
assert(0 <= v and v < n);
return dep[v];
}
T cost(const int v) const {
assert(0 <= v and v < n);
return co[v];
}
int parent(const int v) const {
assert(0 <= v and v < n);
return par[v];
}
int la(int v, int x) const {
assert(0 <= v and v < n);
assert(x >= 0);
if(x > dep[v]) return -1;
while(true) {
const int u = nex[v];
if(down[v] - x >= down[u]) return rev[down[v] - x];
x -= down[v] - down[u] + 1;
v = par[u];
}
}
int lca(int u, int v) const {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
while(nex[u] != nex[v]) {
if(down[u] < down[v]) swap(u, v);
u = par[nex[u]];
}
return dep[u] < dep[v] ? u : v;
}
int dist(const int u, const int v) const {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
return dep[u] + dep[v] - dep[lca(u, v)] * 2;
}
T length(const int u, const int v) const {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
return co[u] + co[v] - co[lca(u, v)] * 2;
}
template <typename F>
void path_query(const int u, const int v, const bool vertex, const F& f) {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
const int l = lca(u, v);
for(auto&& [a, b] : ascend(u, l)) f(a + 1, b);
if(vertex) f(down[l], down[l] + 1);
for(auto&& [a, b] : descend(l, v)) f(a, b + 1);
}
template <typename F>
void subtree_query(const int v, const bool vertex, const F& f) {
assert(0 <= v and v < n);
f(down[v] + int(!vertex), up[v]);
}
private:
Graph<T>& g;
int n, id;
vector<int> sz, dep, down, up, nex, par, rev;
vector<T> co;
void dfs_sz(const int cur) {
sz[cur] = 1;
for(Edge<T>& edge : g[cur]) {
if(edge.to == par[cur]) {
if(g[cur].size() >= 2 and edge.to == g[cur][0].to) {
swap(g[cur][0], g[cur][1]);
} else {
continue;
}
}
dep[edge.to] = dep[cur] + 1;
co[edge.to] = co[cur] + edge.cost;
par[edge.to] = cur;
dfs_sz(edge.to);
sz[cur] += sz[edge.to];
if(sz[edge.to] > sz[g[cur][0].to]) {
swap(edge, g[cur][0]);
}
}
}
void dfs_hld(const int cur) {
down[cur] = id++;
rev[down[cur]] = cur;
for(const Edge<T>& edge : g[cur]) {
if(edge.to == par[cur]) continue;
nex[edge.to] = (edge.to == g[cur][0].to ? nex[cur] : edge.to);
dfs_hld(edge.to);
}
up[cur] = id;
}
vector<pair<int, int>> ascend(int u, int v) const {
vector<pair<int, int>> res;
while(nex[u] != nex[v]) {
res.emplace_back(down[u], down[nex[u]]);
u = par[nex[u]];
}
if(u != v) res.emplace_back(down[u], down[v] + 1);
return res;
}
vector<pair<int, int>> descend(const int u, const int v) const {
if(u == v) return {};
if(nex[u] == nex[v]) return {{down[u] + 1, down[v]}};
auto res = descend(u, par[nex[v]]);
res.emplace_back(down[nex[v]], down[v]);
return res;
}
};
#line 5 "src/tree/auxiliary_tree.hpp"
template <typename T>
struct AuxiliaryTree {
AuxiliaryTree(const Graph<T>& _g, const int root = 0)
: g(_g), hld(g, root) {}
pair<Graph<int>, vector<int>> get(vector<int> idx) {
if(idx.empty()) return {Graph<int>(0), {}};
auto comp = [&](const int i, const int j) {
return hld.idx(i).first < hld.idx(j).first;
};
sort(begin(idx), end(idx), comp);
for(int i = 0, ie = idx.size(); i + 1 < ie; ++i) {
idx.push_back(hld.lca(idx[i], idx[i + 1]));
}
sort(begin(idx), end(idx), comp);
idx.erase(unique(begin(idx), end(idx)), end(idx));
Graph<int> aux(idx.size());
vector<int> rs;
rs.push_back(0);
for(int i = 1; i < (int)idx.size(); ++i) {
const int l = hld.lca(idx[rs.back()], idx[i]);
while(idx[rs.back()] != l) rs.pop_back();
aux.add_directed_edge(rs.back(), i);
rs.push_back(i);
}
return make_pair(aux, idx);
}
private:
Graph<T> g;
HeavyLightDecomposition<T> hld;
};
#line 8 "verify/unit_test/tree/auxiliary_tree.test.cpp"
// ABC340-G
void test() {
int n = rng(1, 500);
int ma = rng(1, n);
vector<int> a = rng.vec(n, 1, ma, true);
auto [u, v] = rng.tree(n, true);
auto brute = [&](int n, vector<int> a, vector<int> u, vector<int> v) -> mint {
rep(i, 0, n) {
a[i]--;
}
Graph<int> g(n);
rep(i, 0, n - 1) {
u[i]--;
v[i]--;
g.add_edge(u[i], v[i]);
}
mint ans = 0;
rep(i, 0, n) {
map<int, mint> dp1, dp2;
auto dfs = [&](auto& dfs, int cur, int p) -> void {
dp1[cur] = 1;
dp2[cur] = 1;
for(const auto& e : g[cur]) {
if(e.to == p) continue;
dfs(dfs, e.to, cur);
dp1[cur] *= dp2[e.to] + 1;
dp2[cur] *= dp2[e.to] + 1;
}
if(a[cur] != i) {
for(const auto& e : g[cur]) {
if(e.to == p) continue;
dp1[cur] -= dp2[e.to];
}
dp1[cur]--;
dp2[cur]--;
}
ans += dp1[cur];
};
dfs(dfs, 0, -1);
}
return ans;
};
auto fast = [&](int n, vector<int> a, vector<int> u, vector<int> v) -> mint {
vector<vector<int>> col(n);
rep(i, 0, n) {
a[i]--;
col[a[i]].push_back(i);
}
Graph<int> g(n);
rep(i, 0, n - 1) {
u[i]--;
v[i]--;
g.add_edge(u[i], v[i]);
}
AuxiliaryTree<int> aux(g);
mint ans = 0;
rep(i, 0, n) {
if(col[i].empty()) continue;
auto [tree, idx] = aux.get(col[i]);
map<int, mint> dp1, dp2;
auto dfs = [&](auto& dfs, int cur, int p) -> void {
dp1[cur] = 1;
dp2[cur] = 1;
for(const auto& e : tree[cur]) {
if(e.to == p) continue;
dfs(dfs, e.to, cur);
dp1[cur] *= dp2[e.to] + 1;
dp2[cur] *= dp2[e.to] + 1;
}
if(a[idx[cur]] != i) {
for(const auto& e : tree[cur]) {
if(e.to == p) continue;
dp1[cur] -= dp2[e.to];
}
dp1[cur]--;
dp2[cur]--;
}
ans += dp1[cur];
};
dfs(dfs, 0, -1);
}
return ans;
};
assert(brute(n, a, u, v) == fast(n, a, u, v));
}
int main(void) {
constexpr int test_num = 100;
rep(i, 0, test_num) {
test();
}
int a, b;
cin >> a >> b;
cout << a + b << '\n';
}