This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#include "../../../src/template/template.hpp"
#include "../../../src/random/random_number_generator.hpp"
#include "../../../src/math/eratosthenes_sieve.hpp"
#include "../../../src/math/is_prime.hpp"
#include "../../../src/math/euler_phi.hpp"
#include "../../../src/math/moebius.hpp"
#include "../../../src/math/divisor.hpp"
#include "../../../src/math/prime_factors.hpp"
void test() {
EratosthenesSieve sieve(10000000);
rep(i, 0, 10000) {
int n = rng(1, 10000000);
if(is_prime(n)) {
assert(sieve.min_factor[n] == n);
} else {
assert(sieve.min_factor[n] != n);
}
if(is_prime(i)) {
assert(sieve.min_factor[i] == i);
} else {
assert(sieve.min_factor[i] != i);
}
assert(euler_phi(n) == sieve.euler[n]);
assert(moebius(n) == sieve.moebius[n]);
}
rep(i, 1, 100) {
if(is_prime(i)) {
assert(sieve.min_factor[i] == i);
} else {
assert(sieve.min_factor[i] != i);
}
assert(euler_phi(i) == sieve.euler[i]);
assert(moebius(i) == sieve.moebius[i]);
}
rep(i, 1, 10000) {
int n = rng(1, 10000000);
vector<pair<int, int>> pf1 = sieve.prime_factors(n);
vector<pair<long long, int>> pf2 = prime_factors(n);
assert(pf1.size() == pf2.size());
for(int i = 0; i < (int)pf1.size(); ++i) {
assert(pf1[i].first == pf2[i].first);
assert(pf1[i].second == pf2[i].second);
}
vector<int> d1 = sieve.divisor(n);
vector<ll> d2 = divisor(n);
assert(d1.size() == d2.size());
for(int i = 0; i < (int)d1.size(); ++i) {
assert(d1[i] == d2[i]);
}
}
}
int main(void) {
test();
int a, b;
cin >> a >> b;
cout << a + b << '\n';
}
#line 1 "verify/unit_test/math/eratosthenes_sieve.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/aplusb"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/random/random_number_generator.hpp"
struct RandomNumberGenerator {
RandomNumberGenerator()
: mt(chrono::steady_clock::now().time_since_epoch().count()) {}
template <typename T>
inline T operator()(const T lower, const T upper) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(lower <= upper);
if constexpr(is_integral_v<T>) {
uniform_int_distribution<T> dist(lower, upper);
return dist(mt);
} else if constexpr(is_floating_point_v<T>) {
uniform_real_distribution<T> dist(lower, upper);
return dist(mt);
}
}
template <typename T>
inline vector<T> vec(const int n, const T lower, const T upper, const bool dup = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(lower <= upper);
if(n == 0) return {};
vector<T> res(n);
if(dup or is_floating_point_v<T>) {
for(int i = 0; i < n; ++i) res[i] = this->operator()(lower, upper);
} else {
assert(upper - lower + 1 >= n);
if(upper - lower + 1 >= 2 * n) {
set<T> used;
while((int)used.size() < n) {
const T a = this->operator()(lower, upper);
used.insert(a);
}
int i = 0;
for(const T a : used) {
res[i] = a;
++i;
}
} else {
const vector<int> p = perm(upper - lower + 1, false);
for(int i = 0; i < n; ++i) {
res[i] = p[i] + lower;
}
}
}
return res;
}
inline vector<int> perm(const int n, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
vector<int> res(n);
for(int i = 0; i < n; ++i) res[i] = i + one;
for(int i = n - 1; i > 0; --i) {
swap(res[i], res[this->operator()(0, i)]);
}
return res;
}
inline pair<vector<int>, vector<int>> tree(const int n, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
if(n <= 1) return {{}, {}};
if(n == 2) return {{0 + one}, {1 + one}};
vector<int> u(n - 1), v(n - 1);
const vector<int> pruefer = vec(n - 2, 0, n - 1);
set<int> st;
vector<int> cnt(n);
for(int i = 0; i < n; ++i) st.insert(i);
auto add = [&](const int x) -> void {
if(x > n) return;
if(cnt[x] == 0) st.erase(x);
++cnt[x];
};
auto del = [&](const int x) -> void {
if(x > n) return;
--cnt[x];
if(cnt[x] == 0) st.insert(x);
};
for(int i = 0; i < n - 2; ++i) add(pruefer[i]);
for(int i = 0; i < n - 2; ++i) {
const int a = *st.begin();
const int b = pruefer[i];
u[i] = a + one;
v[i] = b + one;
del(b);
add(a);
}
const int a = *st.begin();
add(a);
const int b = *st.begin();
u[n - 2] = a + one;
v[n - 2] = b + one;
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_tree(const int n, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(lower <= upper);
if(n == 0) return {{}, {}, {}};
const auto [u, v] = tree(n, one);
const vector<T> w = vec(n - 1, lower, upper, true);
return {u, v, w};
}
inline pair<vector<int>, vector<int>> graph(const int n, const int m, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
assert(0 <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
vector<int> u, v;
u.reserve(m);
v.reserve(m);
if(1ll * n * (n - 1) / 2 >= 2e6) {
set<pair<int, int>> edge;
while((int)edge.size() < m) {
const int a = this->operator()(0, n - 1);
const int b = this->operator()(0, n - 1);
if(a >= b) continue;
edge.insert({a, b});
}
for(const auto& [a, b] : edge) {
u.push_back(a + one);
v.push_back(b + one);
}
} else {
vector<pair<int, int>> edge;
edge.reserve(n * (n - 1) / 2);
for(int i = 0; i < n; ++i) {
for(int j = i + 1; j < n; ++j) {
edge.push_back({i, j});
}
}
const vector<int> p = perm(n * (n - 1) / 2, false);
for(int i = 0; i < m; ++i) {
u.push_back(edge[p[i]].first + one);
v.push_back(edge[p[i]].second + one);
}
}
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_graph(const int n, const int m, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(0 <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
assert(lower <= upper);
const auto [u, v] = graph(n, m, one);
const vector<T> w = vec(m, lower, upper, true);
return {u, v, w};
}
inline pair<vector<int>, vector<int>> connected_graph(const int n, const int m, const bool one = true) {
assert(0 <= n and n <= (int)1e8);
assert(max(n - 1, 0) <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
if(n <= 1) return {{}, {}};
vector<int> u, v;
u.reserve(m);
v.reserve(m);
auto [ut, vt] = tree(n, false);
if(1ll * n * (n - 1) / 2 >= 2e6) {
set<pair<int, int>> edge;
for(int i = 0; i < n - 1; ++i) {
edge.insert({min(ut[i], vt[i]), max(ut[i], vt[i])});
}
while((int)edge.size() < m) {
const int a = this->operator()(0, n - 1);
const int b = this->operator()(0, n - 1);
if(a >= b) continue;
edge.insert({a, b});
}
for(const auto& [a, b] : edge) {
u.push_back(a + one);
v.push_back(b + one);
}
} else {
set<pair<int, int>> used;
for(int i = 0; i < n - 1; ++i) {
u.push_back(ut[i] + one);
v.push_back(vt[i] + one);
used.insert({min(ut[i], vt[i]), max(ut[i], vt[i])});
}
vector<pair<int, int>> edge;
edge.reserve(n * (n - 1) / 2 - (n - 1));
for(int i = 0; i < n; ++i) {
for(int j = i + 1; j < n; ++j) {
if(used.find({i, j}) == used.end()) edge.push_back({i, j});
}
}
const vector<int> p = perm(n * (n - 1) / 2 - (n - 1), false);
for(int i = 0; i < m - (n - 1); ++i) {
u.push_back(edge[p[i]].first + one);
v.push_back(edge[p[i]].second + one);
}
}
return {u, v};
}
template <typename T>
inline tuple<vector<int>, vector<int>, vector<T>> weighted_connected_graph(const int n, const int m, const T lower, const T upper, const bool one = true) {
static_assert(is_integral_v<T> or is_floating_point_v<T>);
assert(0 <= n and n <= (int)1e8);
assert(max(n - 1, 0) <= m and m <= (int)min((ll)1e8, 1ll * n * (n - 1) / 2));
assert(lower <= upper);
const auto [u, v] = connected_graph(n, m, one);
const vector<T> w = vec(m, lower, upper, true);
return {u, v, w};
}
inline string parenthesis(const int n) {
assert(0 <= n and n <= 1e8);
string res = "";
int N = n, M = n;
for(int i = 0; i < 2 * n; ++i) {
if(this->operator()(0.0l, 1.0l) > 1.0l * (N - M) * (N + 1) / ((N - M + 1) * (N + M))) {
res += "(";
--M;
} else {
res += ")";
--N;
}
}
return res;
}
private:
mt19937_64 mt;
} rng;
#line 3 "src/math/eratosthenes_sieve.hpp"
struct EratosthenesSieve {
vector<int> primes, min_factor, moebius, euler;
EratosthenesSieve(const int N)
: primes(), min_factor(N + 1), moebius(N + 1, 1), euler(N + 1), N(N) {
assert(N >= 1);
iota(min_factor.begin(), min_factor.end(), 0);
min_factor[0] = min_factor[1] = -1;
iota(euler.begin(), euler.end(), 0);
for(int i = 2; i <= N; ++i) {
if(min_factor[i] < i) continue;
primes.emplace_back(i);
moebius[i] = -1;
euler[i] = euler[i] / i * (i - 1);
for(int j = i * 2; j <= N; j += i) {
if(min_factor[j] == j) min_factor[j] = i;
if((j / i) % i == 0) moebius[j] = 0;
else moebius[j] = -moebius[j];
euler[j] = euler[j] / i * (i - 1);
}
}
}
vector<pair<int, int>> prime_factors(int n) const {
assert(1 <= n and n <= N);
vector<pair<int, int>> res;
while(n > 1) {
const int p = min_factor[n];
int exp = 0;
while(min_factor[n] == p) {
n /= p;
++exp;
}
res.emplace_back(p, exp);
}
return res;
}
vector<int> divisor(const int n) const {
assert(1 <= n and n <= n);
vector<int> res({1});
const auto pf = prime_factors(n);
for(const auto& p : pf) {
const int s = (int)res.size();
for(int i = 0; i < s; ++i) {
int v = 1;
for(int j = 0; j < p.second; ++j) {
v *= p.first;
res.push_back(res[i] * v);
}
}
}
sort(res.begin(), res.end());
return res;
}
private:
int N;
};
#line 3 "src/math/is_prime.hpp"
constexpr bool is_prime(const long long n) {
if(n <= 1) return false;
for(long long i = 2; i * i <= n; ++i) {
if(n % i == 0) return false;
}
return true;
}
#line 3 "src/math/euler_phi.hpp"
constexpr long long euler_phi(long long n) {
long long res = max(n, 0ll);
for(long long i = 2; i * i <= n; ++i) {
if(n % i == 0) {
res -= res / i;
while(n % i == 0) n /= i;
}
}
if(n > 1) res -= res / n;
return res;
}
#line 3 "src/math/prime_factors.hpp"
vector<pair<long long, int>> prime_factors(long long n) {
assert(n >= 1);
vector<pair<long long, int>> res;
for(long long i = 2; i * i <= n; ++i) {
if(n % i == 0) {
res.emplace_back(i, 0);
while(n % i == 0) {
n /= i;
++res.back().second;
}
}
}
if(n >= 2) res.emplace_back(n, 1);
return res;
}
#line 4 "src/math/moebius.hpp"
int moebius(const long long n) {
assert(n >= 1);
if(n == 1) return 1;
const vector<pair<long long, int>> p = prime_factors(n);
int res = 1;
for(const auto& it : p) {
if(it.second >= 2) return 0;
res = -res;
}
return res;
}
#line 3 "src/math/divisor.hpp"
vector<long long> divisor(const long long n) {
assert(n >= 1);
vector<long long> res;
for(long long i = 1; i * i <= n; ++i) {
if(n % i == 0) {
res.push_back(i);
if(i * i != n) res.emplace_back(n / i);
}
}
sort(res.begin(), res.end());
return res;
}
#line 10 "verify/unit_test/math/eratosthenes_sieve.test.cpp"
void test() {
EratosthenesSieve sieve(10000000);
rep(i, 0, 10000) {
int n = rng(1, 10000000);
if(is_prime(n)) {
assert(sieve.min_factor[n] == n);
} else {
assert(sieve.min_factor[n] != n);
}
if(is_prime(i)) {
assert(sieve.min_factor[i] == i);
} else {
assert(sieve.min_factor[i] != i);
}
assert(euler_phi(n) == sieve.euler[n]);
assert(moebius(n) == sieve.moebius[n]);
}
rep(i, 1, 100) {
if(is_prime(i)) {
assert(sieve.min_factor[i] == i);
} else {
assert(sieve.min_factor[i] != i);
}
assert(euler_phi(i) == sieve.euler[i]);
assert(moebius(i) == sieve.moebius[i]);
}
rep(i, 1, 10000) {
int n = rng(1, 10000000);
vector<pair<int, int>> pf1 = sieve.prime_factors(n);
vector<pair<long long, int>> pf2 = prime_factors(n);
assert(pf1.size() == pf2.size());
for(int i = 0; i < (int)pf1.size(); ++i) {
assert(pf1[i].first == pf2[i].first);
assert(pf1[i].second == pf2[i].second);
}
vector<int> d1 = sieve.divisor(n);
vector<ll> d2 = divisor(n);
assert(d1.size() == d2.size());
for(int i = 0; i < (int)d1.size(); ++i) {
assert(d1[i] == d2[i]);
}
}
}
int main(void) {
test();
int a, b;
cin >> a >> b;
cout << a + b << '\n';
}