This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/rooted_tree_isomorphism_classification"
#include "../../../src/template/template.hpp"
#include "../../../src/graph/graph_template.hpp"
#include "../../../src/tree/rooted_tree_hash.hpp"
int main(void) {
int n;
cin >> n;
Graph<int> g(n);
rep(i, 1, n) {
int p;
cin >> p;
g.add_edge(i, p);
}
vector<ll> h = rooted_tree_hash(g, 0);
unordered_map<ll, int> mp;
int idx = 0;
rep(i, 0, n) {
if(mp.find(h[i]) == mp.end()) {
mp[h[i]] = idx++;
}
}
cout << idx << '\n';
rep(i, 0, n) {
cout << mp[h[i]] << " \n"[i + 1 == n];
}
}
#line 1 "verify/library_checker/tree/rooted_tree_isomorphism_classification.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/rooted_tree_isomorphism_classification"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 3 "src/template/modint_2_61m1.hpp"
struct Modint_2_61m1 {
using mint = Modint_2_61m1;
using u64 = uint64_t;
using u128 = __uint128_t;
static constexpr u64 mod() {
return m;
}
static constexpr mint raw(const u64 v) {
mint a;
a._v = v;
return a;
}
constexpr Modint_2_61m1()
: _v(0) {}
template <class T>
constexpr Modint_2_61m1(const T& v) {
static_assert(is_integral_v<T>);
if constexpr(is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if(x < 0) x += m;
_v = u64(x);
} else _v = u64(v % m);
}
constexpr u64 val() const {
return _v;
}
constexpr mint& operator++() {
return *this += 1;
}
constexpr mint& operator--() {
return *this -= 1;
}
constexpr mint operator++(int) {
mint res = *this;
++*this;
return res;
}
constexpr mint operator--(int) {
mint res = *this;
--*this;
return res;
}
constexpr mint& operator+=(mint rhs) {
if(_v >= m - rhs._v) _v -= m;
_v += rhs._v;
return *this;
}
constexpr mint& operator-=(mint rhs) {
if(_v < rhs._v) _v += m;
_v -= rhs._v;
return *this;
}
constexpr mint& operator*=(mint rhs) {
return *this = *this * rhs;
}
constexpr mint& operator/=(mint rhs) {
return *this *= rhs.inv();
}
constexpr mint operator+() const {
return *this;
}
constexpr mint operator-() const {
return mint{} - *this;
}
constexpr mint pow(u64 n) const {
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
assert(_v);
return pow(m - 2);
}
friend constexpr mint operator+(mint lhs, mint rhs) {
return lhs += rhs;
}
friend constexpr mint operator-(mint lhs, mint rhs) {
return lhs -= rhs;
}
friend constexpr mint operator*(mint lhs, mint rhs) {
return raw(modulo(u128(lhs._v) * rhs._v));
}
friend constexpr mint operator/(mint lhs, mint rhs) {
return lhs /= rhs;
}
friend constexpr bool operator==(mint lhs, mint rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(mint lhs, mint rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
static constexpr u64 m = (1ull << 61) - 1;
u64 _v = 0;
inline static constexpr u64 modulo(const u128& x) {
const u64 val = (x >> 61) + (x & m);
return val >= m ? val - m : val;
}
};
#line 5 "src/tree/rooted_tree_hash.hpp"
template <typename T>
vector<ll> rooted_tree_hash(const Graph<T>& g, const int root = 0) {
const int n = g.size();
assert(0 <= root and root < n);
static mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());
static vector<Modint_2_61m1> hash;
while((int)hash.size() < n) {
static uniform_int_distribution<unsigned long long> dist(0, Modint_2_61m1::mod() - 1);
hash.emplace_back(dist(mt));
}
vector<ll> res(n);
auto dfs = [&](const auto& dfs, const int cur, const int par) -> int {
int depth = 0;
for(const auto& e : g[cur]) {
if(e.to == par) continue;
depth = max(depth, dfs(dfs, e.to, cur) + 1);
}
Modint_2_61m1 h = 1, r = hash[depth];
for(const auto& e : g[cur]) {
if(e.to == par) continue;
h *= (r + res[e.to]);
}
res[cur] = h.val();
return depth;
};
dfs(dfs, root, -1);
return res;
}
#line 5 "verify/library_checker/tree/rooted_tree_isomorphism_classification.test.cpp"
int main(void) {
int n;
cin >> n;
Graph<int> g(n);
rep(i, 1, n) {
int p;
cin >> p;
g.add_edge(i, p);
}
vector<ll> h = rooted_tree_hash(g, 0);
unordered_map<ll, int> mp;
int idx = 0;
rep(i, 0, n) {
if(mp.find(h[i]) == mp.end()) {
mp[h[i]] = idx++;
}
}
cout << idx << '\n';
rep(i, 0, n) {
cout << mp[h[i]] << " \n"[i + 1 == n];
}
}