This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod"
#include "../../../src/template/template.hpp"
#include "../../../src/template/dynamic_modint.hpp"
#include "../../../src/math/binomial.hpp"
using mint = modint;
int main(void) {
int t, m;
cin >> t >> m;
mint::set_mod(m);
Binomial<mint> binom(min(m - 1, 10000005));
while(t--) {
int n, k;
cin >> n >> k;
cout << binom(n, k) << '\n';
}
}
#line 1 "verify/library_checker/enumerative_combinatrics/binomial_coefficient_prime_mod.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/template/dynamic_modint.hpp"
struct Barrett {
explicit Barrett(const unsigned int m)
: _m(m), im((unsigned long long)(-1) / m + 1) {}
inline unsigned int umod() const {
return _m;
}
inline unsigned int mul(const unsigned int a, const unsigned int b) const {
unsigned long long z = a;
z *= b;
const unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
unsigned int v = (unsigned int)(z - x * _m);
if(_m <= v) v += _m;
return v;
}
private:
unsigned int _m;
unsigned long long im;
};
template <int id>
struct DynamicModint {
using mint = DynamicModint;
static int mod() {
return (int)bt.umod();
}
static void set_mod(const int m) {
assert(1 <= m);
bt = Barrett(m);
}
static mint raw(const int v) {
mint a;
a._v = v;
return a;
}
DynamicModint()
: _v(0) {}
template <class T>
DynamicModint(const T& v) {
static_assert(is_integral_v<T>);
if(is_signed_v<T>) {
long long x = (long long)(v % (long long)(umod()));
if(x < 0) x += umod();
_v = (unsigned int)(x);
} else _v = (unsigned int)(v % umod());
}
unsigned int val() const {
return _v;
}
mint& operator++() {
++_v;
if(_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if(_v == 0) _v = umod();
--_v;
return *this;
}
mint operator++(int) {
mint res = *this;
++*this;
return res;
}
mint operator--(int) {
mint res = *this;
--*this;
return res;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if(_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if(_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) {
return *this *= rhs.inv();
}
mint operator+() const {
return *this;
}
mint operator-() const {
return mint() - *this;
}
mint pow(long long n) const {
assert(0 <= n);
if(n == 0) return 1;
mint x = *this, r = 1;
while(1) {
if(n & 1) r *= x;
n >>= 1;
if(n == 0) return r;
x *= x;
}
}
mint inv() const {
const auto eg = inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
friend istream& operator>>(istream& in, mint& x) {
long long a;
in >> a;
x = a;
return in;
}
friend ostream& operator<<(ostream& out, const mint& x) {
return out << x.val();
}
private:
unsigned int _v = 0;
static Barrett bt;
inline static unsigned int umod() {
return bt.umod();
}
inline static pair<long long, long long> inv_gcd(const long long a, const long long b) {
if(a == 0) return {b, 0};
long long s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const long long u = s / t;
s -= t * u;
m0 -= m1 * u;
swap(s, t);
swap(m0, m1);
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
};
template <int id>
Barrett DynamicModint<id>::bt(998244353);
using modint = DynamicModint<-1>;
#line 3 "src/math/binomial.hpp"
template <typename mint>
struct Binomial {
Binomial(int n)
: fac(n + 1), ifac(n + 1) {
fac[0] = 1;
for(int i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i;
ifac[n] = fac[n].inv();
for(int i = n; i >= 1; --i) ifac[i - 1] = ifac[i] * i;
}
mint fact(int n) const {
if(n < 0) return 0;
return fac[n];
}
mint perm(int n, int r) const {
if(n < 0 or n < r or r < 0) return 0;
return fac[n] * ifac[n - r];
}
mint comb(int n, int r) const {
if(n < 0 or n < r or r < 0) return 0;
return fac[n] * ifac[n - r] * ifac[r];
}
mint homo(int n, int r) const {
if(n < 0 or r < 0) return 0;
if(r == 0) return 1;
return comb(n + r - 1, r);
}
mint operator()(int n, int r) const {
return comb(n, r);
}
private:
vector<mint> fac, ifac;
};
#line 5 "verify/library_checker/enumerative_combinatrics/binomial_coefficient_prime_mod.test.cpp"
using mint = modint;
int main(void) {
int t, m;
cin >> t >> m;
mint::set_mod(m);
Binomial<mint> binom(min(m - 1, 10000005));
while(t--) {
int n, k;
cin >> n >> k;
cout << binom(n, k) << '\n';
}
}