Fu_L's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub Fu-L/cp-library

:heavy_check_mark: verify/library_checker/data_structure/range_affine_point_get.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_point_get"
#include "../../../src/template/template.hpp"
#include "../../../src/template/static_modint.hpp"
#include "../../../src/data_structure/lazy_segment_tree.hpp"
using mint = modint998244353;
struct S {
    mint a;
    ll size;
};
struct F {
    mint a, b;
};
S op(S l, S r) {
    return S{l.a + r.a, l.size + r.size};
}
S e() {
    return S{0, 0};
}
S mapping(F l, S r) {
    return S{r.a * l.a + r.size * l.b, r.size};
}
F composition(F l, F r) {
    return F{r.a * l.a, r.b * l.a + l.b};
}
F id() {
    return F{1, 0};
}
int main(void) {
    int n, q;
    cin >> n >> q;
    vector<S> a(n);
    rep(i, 0, n) {
        int x;
        cin >> x;
        a[i] = S{x, 1};
    }
    LazySegmentTree<S, op, e, F, mapping, composition, id> seg(a);
    while(q--) {
        int t;
        cin >> t;
        if(t == 0) {
            int l, r, c, d;
            cin >> l >> r >> c >> d;
            seg.apply(l, r, F{c, d});
        } else {
            int i;
            cin >> i;
            cout << seg.get(i).a << '\n';
        }
    }
}
#line 1 "verify/library_checker/data_structure/range_affine_point_get.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_point_get"
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
    SetupIO() {
        ios::sync_with_stdio(0);
        cin.tie(0);
        cout << fixed << setprecision(30);
    }
} setup_io;
#line 3 "src/template/static_modint.hpp"
template <uint32_t m>
struct StaticModint {
    using mint = StaticModint;
    static constexpr uint32_t mod() {
        return m;
    }
    static constexpr mint raw(const uint32_t v) {
        mint a;
        a._v = v;
        return a;
    }
    constexpr StaticModint()
        : _v(0) {}
    template <class T>
    constexpr StaticModint(const T& v) {
        static_assert(is_integral_v<T>);
        if constexpr(is_signed_v<T>) {
            int64_t x = int64_t(v % int64_t(m));
            if(x < 0) x += m;
            _v = uint32_t(x);
        } else _v = uint32_t(v % m);
    }
    constexpr uint32_t val() const {
        return _v;
    }
    constexpr mint& operator++() {
        return *this += 1;
    }
    constexpr mint& operator--() {
        return *this -= 1;
    }
    constexpr mint operator++(int) {
        mint res = *this;
        ++*this;
        return res;
    }
    constexpr mint operator--(int) {
        mint res = *this;
        --*this;
        return res;
    }
    constexpr mint& operator+=(mint rhs) {
        if(_v >= m - rhs._v) _v -= m;
        _v += rhs._v;
        return *this;
    }
    constexpr mint& operator-=(mint rhs) {
        if(_v < rhs._v) _v += m;
        _v -= rhs._v;
        return *this;
    }
    constexpr mint& operator*=(mint rhs) {
        return *this = *this * rhs;
    }
    constexpr mint& operator/=(mint rhs) {
        return *this *= rhs.inv();
    }
    constexpr mint operator+() const {
        return *this;
    }
    constexpr mint operator-() const {
        return mint{} - *this;
    }
    constexpr mint pow(long long n) const {
        assert(0 <= n);
        if(n == 0) return 1;
        mint x = *this, r = 1;
        while(1) {
            if(n & 1) r *= x;
            n >>= 1;
            if(n == 0) return r;
            x *= x;
        }
    }
    constexpr mint inv() const {
        if constexpr(prime) {
            assert(_v);
            return pow(m - 2);
        } else {
            const auto eg = inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    friend constexpr mint operator+(mint lhs, mint rhs) {
        return lhs += rhs;
    }
    friend constexpr mint operator-(mint lhs, mint rhs) {
        return lhs -= rhs;
    }
    friend constexpr mint operator*(mint lhs, mint rhs) {
        return uint64_t(lhs._v) * rhs._v;
    }
    friend constexpr mint operator/(mint lhs, mint rhs) {
        return lhs /= rhs;
    }
    friend constexpr bool operator==(mint lhs, mint rhs) {
        return lhs._v == rhs._v;
    }
    friend constexpr bool operator!=(mint lhs, mint rhs) {
        return lhs._v != rhs._v;
    }
    friend istream& operator>>(istream& in, mint& x) {
        long long a;
        in >> a;
        x = a;
        return in;
    }
    friend ostream& operator<<(ostream& out, const mint& x) {
        return out << x.val();
    }

   private:
    uint32_t _v = 0;
    static constexpr bool prime = []() -> bool {
        if(m == 1) return 0;
        if(m == 2 or m == 7 or m == 61) return 1;
        if(m % 2 == 0) return 0;
        uint32_t d = m - 1;
        while(d % 2 == 0) d /= 2;
        for(uint32_t a : {2, 7, 61}) {
            uint32_t t = d;
            mint y = mint(a).pow(t);
            while(t != m - 1 && y != 1 && y != m - 1) {
                y *= y;
                t <<= 1;
            }
            if(y != m - 1 && t % 2 == 0) return 0;
        }
        return 1;
    }();
    static constexpr pair<int32_t, int32_t> inv_gcd(const int32_t a, const int32_t b) {
        if(a == 0) return {b, 0};
        int32_t s = b, t = a, m0 = 0, m1 = 1;
        while(t) {
            const int32_t u = s / t;
            s -= t * u;
            m0 -= m1 * u;
            swap(s, t);
            swap(m0, m1);
        }
        if(m0 < 0) m0 += b / s;
        return {s, m0};
    }
};
using modint998244353 = StaticModint<998244353>;
using modint1000000007 = StaticModint<1000000007>;
#line 3 "src/data_structure/lazy_segment_tree.hpp"
template <typename S, auto op, auto e, typename F, auto mapping, auto composition, auto id>
struct LazySegmentTree {
    LazySegmentTree(const int N)
        : LazySegmentTree(vector<S>(N, e())) {}
    LazySegmentTree(const vector<S>& v)
        : n((int)v.size()) {
        size = bit_ceil((unsigned int)n);
        log = countr_zero((unsigned int)size);
        data = vector<S>(2 * size, e());
        lazy = vector<F>(size, id());
        for(int i = 0; i < n; ++i) {
            data[size + i] = v[i];
        }
        for(int i = size - 1; i >= 1; --i) {
            update(i);
        }
    }
    void set(int p, const S& x) {
        assert(0 <= p and p < n);
        p += size;
        for(int i = log; i >= 1; --i) {
            push(p >> i);
        }
        data[p] = x;
        for(int i = 1; i <= log; ++i) {
            update(p >> i);
        }
    }
    S get(int p) {
        assert(0 <= p and p < n);
        p += size;
        for(int i = log; i >= 1; --i) {
            push(p >> i);
        }
        return data[p];
    }
    S prod(int l, int r) {
        assert(0 <= l and l <= r and r <= n);
        if(l == r) return e();
        l += size;
        r += size;
        for(int i = log; i >= 1; --i) {
            if(((l >> i) << i) != l) push(l >> i);
            if(((r >> i) << i) != r) push((r - 1) >> i);
        }
        S sml = e(), smr = e();
        while(l < r) {
            if(l & 1) sml = op(sml, data[l++]);
            if(r & 1) smr = op(data[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }
    S all_prod() const {
        return data[1];
    }
    void apply(int l, int r, const F& f) {
        assert(0 <= l and l <= r and r <= n);
        if(l == r) return;
        l += size;
        r += size;
        for(int i = log; i >= 1; --i) {
            if(((l >> i) << i) != l) push(l >> i);
            if(((r >> i) << i) != r) push((r - 1) >> i);
        }
        {
            int l2 = l, r2 = r;
            while(l < r) {
                if(l & 1) all_apply(l++, f);
                if(r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }
        for(int i = 1; i <= log; ++i) {
            if(((l >> i) << i) != l) update(l >> i);
            if(((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)>
    int max_right(const int l) {
        return max_right(l, [](const S& x) { return g(x); });
    }
    template <class G>
    int max_right(int l, const G& g) {
        assert(0 <= l and l <= n);
        assert(g(e()));
        if(l == n) return n;
        l += size;
        for(int i = log; i >= 1; --i) push(l >> i);
        S sm = e();
        do {
            while(l % 2 == 0) l >>= 1;
            if(!g(op(sm, data[l]))) {
                while(l < size) {
                    push(l);
                    l = 2 * l;
                    if(g(op(sm, data[l]))) {
                        sm = op(sm, data[l]);
                        ++l;
                    }
                }
                return l - size;
            }
            sm = op(sm, data[l]);
            ++l;
        } while((l & -l) != l);
        return n;
    }

    template <bool (*g)(S)>
    int min_left(const int r) {
        return min_left(r, [](const S& x) { return g(x); });
    }
    template <class G>
    int min_left(int r, const G& g) {
        assert(0 <= r and r <= n);
        assert(g(e()));
        if(r == 0) return 0;
        r += size;
        for(int i = log; i >= 1; --i) push((r - 1) >> i);
        S sm = e();
        do {
            --r;
            while(r > 1 and (r % 2)) r >>= 1;
            if(!g(op(data[r], sm))) {
                while(r < size) {
                    push(r);
                    r = 2 * r + 1;
                    if(g(op(data[r], sm))) {
                        sm = op(data[r], sm);
                        --r;
                    }
                }
                return r + 1 - size;
            }
            sm = op(data[r], sm);
        } while((r & -r) != r);
        return 0;
    }

   private:
    int n, size, log;
    vector<S> data;
    vector<F> lazy;
    inline void update(const int k) {
        data[k] = op(data[2 * k], data[2 * k + 1]);
    }
    inline void all_apply(const int k, const F& f) {
        data[k] = mapping(f, data[k]);
        if(k < size) {
            lazy[k] = composition(f, lazy[k]);
        }
    }
    inline void push(const int k) {
        all_apply(2 * k, lazy[k]);
        all_apply(2 * k + 1, lazy[k]);
        lazy[k] = id();
    }
    inline unsigned int bit_ceil(const unsigned int n) const {
        unsigned int res = 1;
        while(res < n) res *= 2;
        return res;
    }
    inline int countr_zero(const unsigned int n) const {
        return __builtin_ctz(n);
    }
};
#line 5 "verify/library_checker/data_structure/range_affine_point_get.test.cpp"
using mint = modint998244353;
struct S {
    mint a;
    ll size;
};
struct F {
    mint a, b;
};
S op(S l, S r) {
    return S{l.a + r.a, l.size + r.size};
}
S e() {
    return S{0, 0};
}
S mapping(F l, S r) {
    return S{r.a * l.a + r.size * l.b, r.size};
}
F composition(F l, F r) {
    return F{r.a * l.a, r.b * l.a + l.b};
}
F id() {
    return F{1, 0};
}
int main(void) {
    int n, q;
    cin >> n >> q;
    vector<S> a(n);
    rep(i, 0, n) {
        int x;
        cin >> x;
        a[i] = S{x, 1};
    }
    LazySegmentTree<S, op, e, F, mapping, composition, id> seg(a);
    while(q--) {
        int t;
        cin >> t;
        if(t == 0) {
            int l, r, c, d;
            cin >> l >> r >> c >> d;
            seg.apply(l, r, F{c, d});
        } else {
            int i;
            cin >> i;
            cout << seg.get(i).a << '\n';
        }
    }
}
Back to top page