This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/tree/rerooting.hpp"
vector<DP> rerooting(Graph<T> g, auto F1 f1, auto F2 f2, DP id)
全方位木DPを計算します.
g
には木を入れてください.
f1
には $2$ つの子ノードのdpテーブルをマージする関数を入れてください.
f2
には 子ノードから親ノードへの遷移を計算する関数を入れてください.
id
には f1
の単位元,および葉ノードのdpテーブルの値を入れてください.
制約
g
は木計算量
f1, f2, id
の取得計算時間を $O(f(n))$ として,
#pragma once
#include "../template/template.hpp"
#include "../graph/graph_template.hpp"
template <typename DP, typename T, typename F1, typename F2>
vector<DP> rerooting(const Graph<T>& g, const F1& f1, const F2& f2, const DP& id) {
const int n = g.size();
vector<DP> memo(n, id), dp(n, id);
auto dfs = [&](const auto& dfs, const int cur, const int par) -> void {
for(const Edge<T>& e : g[cur]) {
if(e.to == par) continue;
dfs(dfs, e.to, cur);
memo[cur] = f1(memo[cur], f2(memo[e.to], e.to, cur));
}
};
auto efs = [&](const auto& efs, const int cur, const int par, const DP& pval) -> void {
vector<DP> buf;
for(const Edge<T>& e : g[cur]) {
if(e.to == par) continue;
buf.emplace_back(f2(memo[e.to], e.to, cur));
}
vector<DP> head(buf.size() + 1), tail(buf.size() + 1);
head[0] = tail[buf.size()] = id;
for(int i = 0; i < (int)buf.size(); ++i) head[i + 1] = f1(head[i], buf[i]);
for(int i = (int)buf.size() - 1; i >= 0; --i) {
tail[i] = f1(tail[i + 1], buf[i]);
}
dp[cur] = par == -1 ? head.back() : f1(pval, head.back());
int idx = 0;
for(const Edge<T>& e : g[cur]) {
if(e.to == par) continue;
efs(efs, e.to, cur, f2(f1(pval, f1(head[idx], tail[idx + 1])), cur, e));
++idx;
}
};
dfs(dfs, 0, -1);
efs(efs, 0, -1, id);
return dp;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 4 "src/tree/rerooting.hpp"
template <typename DP, typename T, typename F1, typename F2>
vector<DP> rerooting(const Graph<T>& g, const F1& f1, const F2& f2, const DP& id) {
const int n = g.size();
vector<DP> memo(n, id), dp(n, id);
auto dfs = [&](const auto& dfs, const int cur, const int par) -> void {
for(const Edge<T>& e : g[cur]) {
if(e.to == par) continue;
dfs(dfs, e.to, cur);
memo[cur] = f1(memo[cur], f2(memo[e.to], e.to, cur));
}
};
auto efs = [&](const auto& efs, const int cur, const int par, const DP& pval) -> void {
vector<DP> buf;
for(const Edge<T>& e : g[cur]) {
if(e.to == par) continue;
buf.emplace_back(f2(memo[e.to], e.to, cur));
}
vector<DP> head(buf.size() + 1), tail(buf.size() + 1);
head[0] = tail[buf.size()] = id;
for(int i = 0; i < (int)buf.size(); ++i) head[i + 1] = f1(head[i], buf[i]);
for(int i = (int)buf.size() - 1; i >= 0; --i) {
tail[i] = f1(tail[i + 1], buf[i]);
}
dp[cur] = par == -1 ? head.back() : f1(pval, head.back());
int idx = 0;
for(const Edge<T>& e : g[cur]) {
if(e.to == par) continue;
efs(efs, e.to, cur, f2(f1(pval, f1(head[idx], tail[idx + 1])), cur, e));
++idx;
}
};
dfs(dfs, 0, -1);
efs(efs, 0, -1, id);
return dp;
}