This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/tree/centroid_decomposition.hpp"
pait<Graph<int>, int> centroid_decomposition(Graph<T> g)
$n$ 頂点の木 g
を入力すると重心分解した木 tree
と,その根 root
を返します.
tree[i][j]
は頂点 $i$ まで木を分解したときにできる $i$ に隣接した連結成分の重心を指しています.
制約
g
は木計算量
#pragma once
#include "../template/template.hpp"
#include "../graph/graph_template.hpp"
template <typename T>
pair<Graph<int>, int> centroid_decomposition(const Graph<T>& g) {
const int n = g.size();
vector<int> sub(n);
vector<bool> visited(n);
Graph<int> tree(n);
auto get_size = [&](const auto& get_size, const int cur, const int par) -> int {
sub[cur] = 1;
for(const Edge<T>& e : g[cur]) {
if(e.to == par or visited[e.to]) continue;
sub[cur] += get_size(get_size, e.to, cur);
}
return sub[cur];
};
auto get_centroid = [&](const auto& get_centroid, const int cur, const int par, const int mid) -> int {
for(const Edge<T>& e : g[cur]) {
if(e.to == par or visited[e.to]) continue;
if(sub[e.to] > mid) return get_centroid(get_centroid, e.to, cur, mid);
}
return cur;
};
auto dfs = [&](const auto& dfs, const int cur) -> int {
const int centroid = get_centroid(get_centroid, cur, -1, get_size(get_size, cur, -1) / 2);
visited[centroid] = true;
for(const Edge<T>& e : g[centroid]) {
if(visited[e.to]) continue;
const int nex = dfs(dfs, e.to);
if(centroid != nex) tree.add_directed_edge(centroid, nex);
}
visited[centroid] = false;
return centroid;
};
const int root = dfs(dfs, 0);
return {tree, root};
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 4 "src/tree/centroid_decomposition.hpp"
template <typename T>
pair<Graph<int>, int> centroid_decomposition(const Graph<T>& g) {
const int n = g.size();
vector<int> sub(n);
vector<bool> visited(n);
Graph<int> tree(n);
auto get_size = [&](const auto& get_size, const int cur, const int par) -> int {
sub[cur] = 1;
for(const Edge<T>& e : g[cur]) {
if(e.to == par or visited[e.to]) continue;
sub[cur] += get_size(get_size, e.to, cur);
}
return sub[cur];
};
auto get_centroid = [&](const auto& get_centroid, const int cur, const int par, const int mid) -> int {
for(const Edge<T>& e : g[cur]) {
if(e.to == par or visited[e.to]) continue;
if(sub[e.to] > mid) return get_centroid(get_centroid, e.to, cur, mid);
}
return cur;
};
auto dfs = [&](const auto& dfs, const int cur) -> int {
const int centroid = get_centroid(get_centroid, cur, -1, get_size(get_size, cur, -1) / 2);
visited[centroid] = true;
for(const Edge<T>& e : g[centroid]) {
if(visited[e.to]) continue;
const int nex = dfs(dfs, e.to);
if(centroid != nex) tree.add_directed_edge(centroid, nex);
}
visited[centroid] = false;
return centroid;
};
const int root = dfs(dfs, 0);
return {tree, root};
}