This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/tree/centroid.hpp"
vector<int> centroid(Graph<T> g)
$n$ 頂点の木 g
の重心を全て返します.
頂点 $v$ が $n$ 頂点の木 g
の重心であるとは,頂点 $v$ を取り除いたときにできる連結成分の大きさの最大値が $n / 2$ 以下であることを指します.
任意の木には重心が $1$ つ,または $2$ つ存在します.
制約
g
は木である計算量
#pragma once
#include "../template/template.hpp"
#include "../graph/graph_template.hpp"
template <typename T>
vector<int> centroid(const Graph<T>& g) {
const int n = g.size();
stack<pair<int, int>> st;
st.emplace(0, -1);
vector<int> sz(n), par(n);
while(!st.empty()) {
const pair<int, int> p = st.top();
if(sz[p.first] == 0) {
sz[p.first] = 1;
for(const Edge<T>& e : g[p.first]) {
if(e.to != p.second) {
st.emplace(e.to, p.first);
}
}
} else {
for(const Edge<T>& e : g[p.first]) {
if(e.to != p.second) {
sz[p.first] += sz[e.to];
}
}
par[p.first] = p.second;
st.pop();
}
}
vector<int> ret;
int size = n;
for(int i = 0; i < n; ++i) {
int val = n - sz[i];
for(const Edge<T>& e : g[i]) {
if(e.to != par[i]) {
val = max(val, sz[e.to]);
}
}
if(val < size) size = val, ret.clear();
if(val == size) ret.emplace_back(i);
}
return ret;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 4 "src/tree/centroid.hpp"
template <typename T>
vector<int> centroid(const Graph<T>& g) {
const int n = g.size();
stack<pair<int, int>> st;
st.emplace(0, -1);
vector<int> sz(n), par(n);
while(!st.empty()) {
const pair<int, int> p = st.top();
if(sz[p.first] == 0) {
sz[p.first] = 1;
for(const Edge<T>& e : g[p.first]) {
if(e.to != p.second) {
st.emplace(e.to, p.first);
}
}
} else {
for(const Edge<T>& e : g[p.first]) {
if(e.to != p.second) {
sz[p.first] += sz[e.to];
}
}
par[p.first] = p.second;
st.pop();
}
}
vector<int> ret;
int size = n;
for(int i = 0; i < n; ++i) {
int val = n - sz[i];
for(const Edge<T>& e : g[i]) {
if(e.to != par[i]) {
val = max(val, sz[e.to]);
}
}
if(val < size) size = val, ret.clear();
if(val == size) ret.emplace_back(i);
}
return ret;
}