This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/matrix/inverse.hpp"
Matrix<T> inverse(Matrix<T> A)
$N \times N$ 行列 $A$ の逆行列を返します.
逆行列が存在しない場合は $0 \times 0$ の行列を返します.
制約
計算量
#pragma once
#include "../template/template.hpp"
#include "./matrix.hpp"
#include "./gauss_elimination.hpp"
template <typename T>
Matrix<T> inverse(const Matrix<T>& a) {
assert(a.H() > 0);
assert(a.H() == a.W());
const int n = a.H();
Matrix<T> m(n, 2 * n);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
m[i][j] = a[i][j];
}
m[i][n + i] = 1;
}
if(gauss_elimination(m, n).first != n) {
Matrix<T> res(0, 0);
return res;
}
Matrix<T> b(n, n);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
b[i][j] = m[i][j + n];
}
}
return b;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/matrix/matrix.hpp"
template <typename T>
struct Matrix {
Matrix(const int h, const int w, const T& val = 0)
: h(h), w(w), A(h, vector<T>(w, val)) {}
int H() const {
return h;
}
int W() const {
return w;
}
const vector<T>& operator[](const int i) const {
assert(0 <= i and i < h);
return A[i];
}
vector<T>& operator[](const int i) {
assert(0 <= i and i < h);
return A[i];
}
static Matrix I(const int n) {
Matrix mat(n, n);
for(int i = 0; i < n; ++i) mat[i][i] = 1;
return mat;
}
Matrix& operator+=(const Matrix& B) {
assert(h == B.h and w == B.w);
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
(*this)[i][j] += B[i][j];
}
}
return (*this);
}
Matrix& operator-=(const Matrix& B) {
assert(h == B.h and w == B.w);
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
(*this)[i][j] -= B[i][j];
}
}
return (*this);
}
Matrix& operator*=(const Matrix& B) {
assert(w == B.h);
vector<vector<T>> C(h, vector<T>(B.w, 0));
for(int i = 0; i < h; ++i) {
for(int k = 0; k < w; ++k) {
for(int j = 0; j < B.w; ++j) {
C[i][j] += (*this)[i][k] * B[k][j];
}
}
}
A.swap(C);
return (*this);
}
Matrix& pow(long long t) {
assert(h == w);
assert(t >= 0);
Matrix B = Matrix::I(h);
while(t > 0) {
if(t & 1ll) B *= (*this);
(*this) *= (*this);
t >>= 1ll;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix& B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix& B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix& B) const {
return (Matrix(*this) *= B);
}
bool operator==(const Matrix& B) const {
assert(h == B.H() and w == B.W());
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
if(A[i][j] != B[i][j]) return false;
}
}
return true;
}
bool operator!=(const Matrix& B) const {
assert(h == B.H() and w == B.W());
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
if(A[i][j] != B[i][j]) return true;
}
}
return false;
}
private:
int h, w;
vector<vector<T>> A;
};
#line 4 "src/matrix/gauss_elimination.hpp"
template <typename T>
pair<int, T> gauss_elimination(Matrix<T>& a, int pivot_end = -1) {
const int h = a.H(), w = a.W();
int rank = 0;
assert(-1 <= pivot_end and pivot_end <= w);
if(pivot_end == -1) pivot_end = w;
T det = 1;
for(int j = 0; j < pivot_end; ++j) {
int idx = -1;
for(int i = rank; i < h; ++i) {
if(a[i][j] != T(0)) {
idx = i;
break;
}
}
if(idx == -1) {
det = 0;
continue;
}
if(rank != idx) det = -det, swap(a[rank], a[idx]);
det *= a[rank][j];
if(a[rank][j] != T(1)) {
const T coeff = T(1) / a[rank][j];
for(int k = j; k < w; ++k) a[rank][k] *= coeff;
}
for(int i = 0; i < h; ++i) {
if(i == rank) continue;
if(a[i][j] != T(0)) {
const T coeff = a[i][j] / a[rank][j];
for(int k = j; k < w; ++k) a[i][k] -= a[rank][k] * coeff;
}
}
++rank;
}
return {rank, det};
}
#line 5 "src/matrix/inverse.hpp"
template <typename T>
Matrix<T> inverse(const Matrix<T>& a) {
assert(a.H() > 0);
assert(a.H() == a.W());
const int n = a.H();
Matrix<T> m(n, 2 * n);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
m[i][j] = a[i][j];
}
m[i][n + i] = 1;
}
if(gauss_elimination(m, n).first != n) {
Matrix<T> res(0, 0);
return res;
}
Matrix<T> b(n, n);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
b[i][j] = m[i][j + n];
}
}
return b;
}