This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/math/zeta_transform.hpp"
(1) void superset_zeta_transform(vector<T>& f, bool inv = false)
(2) void subset_zeta_transform(vector<T>& f, bool inv = false)
長さ $2^N$ の数列 $f$ に対して,
inv = true
ならばメビウス変換) を計算します.inv = true
ならばメビウス変換) を計算します.上位・下位高速ゼータ変換の定義式は以下の通りで,メビウス変換はその逆変換です.
\[(1) ~ g_x = \sum\limits_{i \supseteq x} f_i\] \[(2) ~ g_x = \sum\limits_{i \subseteq x} f_i\]制約
計算量
#pragma once
#include "../template/template.hpp"
template <typename T>
void superset_zeta_transform(vector<T>& f, const bool inv = false) {
const int n = (int)f.size();
assert((n & (n - 1)) == 0);
const int sign = inv ? -1 : 1;
for(int i = 1; i < n; i <<= 1) {
for(int j = 0; j < n; ++j) {
if((j & i) == 0) {
f[j] += sign * f[j | i];
}
}
}
}
template <typename T>
void subset_zeta_transform(vector<T>& f, const bool inv = false) {
const int n = (int)f.size();
assert((n & (n - 1)) == 0);
const int sign = inv ? -1 : 1;
for(int i = 1; i < n; i <<= 1) {
for(int j = 0; j < n; ++j) {
if((j & i) == 0) {
f[j | i] += sign * f[j];
}
}
}
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/math/zeta_transform.hpp"
template <typename T>
void superset_zeta_transform(vector<T>& f, const bool inv = false) {
const int n = (int)f.size();
assert((n & (n - 1)) == 0);
const int sign = inv ? -1 : 1;
for(int i = 1; i < n; i <<= 1) {
for(int j = 0; j < n; ++j) {
if((j & i) == 0) {
f[j] += sign * f[j | i];
}
}
}
}
template <typename T>
void subset_zeta_transform(vector<T>& f, const bool inv = false) {
const int n = (int)f.size();
assert((n & (n - 1)) == 0);
const int sign = inv ? -1 : 1;
for(int i = 1; i < n; i <<= 1) {
for(int j = 0; j < n; ++j) {
if((j & i) == 0) {
f[j | i] += sign * f[j];
}
}
}
}