This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/math/inv_gcd.hpp"
pair<ll, ll> inv_gcd(ll a, ll m)
$\mathrm{gcd} (a, m)$ と $a^{-1} \pmod{m}$ を返します.
$\mathrm{gcd} (a, m) = 1$ でない場合,動作はしますが逆元は (存在しないので) 正しく計算できていないことに注意してください.
制約
計算量
#pragma once
#include "../template/template.hpp"
constexpr pair<long long, long long> inv_gcd(long long a, const long long b) {
a %= b;
if(a < 0) a += b;
if(a == 0) return {b, 0};
long long s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const long long u = s / t;
s -= t * u;
m0 -= m1 * u;
long long tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/math/inv_gcd.hpp"
constexpr pair<long long, long long> inv_gcd(long long a, const long long b) {
a %= b;
if(a < 0) a += b;
if(a == 0) return {b, 0};
long long s = b, t = a, m0 = 0, m1 = 1;
while(t) {
const long long u = s / t;
s -= t * u;
m0 -= m1 * u;
long long tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}