This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/graph/two_edge_connected_components.hpp"
無向グラフの二重辺連結成分分解を行います.
二重辺連結成分とは,無向グラフから橋を全て削除したときの連結成分です.
異なる $2$ つの二重辺連結成分 $A, B$ について,以下の性質が成り立ちます.
任意の異なる $2$ 頂点 $a_1, a_2 \in A$ について,辺について互いに素なパス $a_1 - a_2$ が少なくとも $2$ つ存在する.
任意の $2$ 頂点 $a \in A, b \in B$ について,辺について互いに素なパス $a - b$ を $2$ つ以上取ることはできない
TwoEdgeConnectedComponents<T> tecc(Graph<T> g)
$n$ 頂点 $m$ 辺の無向グラフ g
を二重辺連結成分分解します.
計算量
int tecc[int i]
頂点 i
が何番目の二重辺連結成分に属するかを返します.
制約
計算量
(1) vector<vector<int>> tecc.groups
(2) vector<vector<int>> tecc.tree
i
番目の二重辺連結成分に含まれる頂点集合を保持しています.#pragma once
#include "../template/template.hpp"
#include "./graph_template.hpp"
#include "./low_link.hpp"
template <typename T>
struct TwoEdgeConnectedComponents {
vector<vector<int>> groups, tree;
TwoEdgeConnectedComponents(const Graph<T>& g)
: n(g.size()), k(0), low(g), comp(n, -1) {
for(int i = 0; i < n; ++i) {
if(comp[i] == -1) dfs(g, i, -1);
}
groups.resize(k);
tree.resize(k);
for(int i = 0; i < n; ++i) {
groups[comp[i]].emplace_back(i);
}
for(const pair<int, int>& e : low.bridge) {
int u = comp[e.first], v = comp[e.second];
tree[u].emplace_back(v);
tree[v].emplace_back(u);
}
}
inline int operator[](const int& i) const {
assert(0 <= i and i < n);
return comp[i];
}
private:
int n, k;
LowLink<T> low;
vector<int> comp;
void dfs(const Graph<T>& g, const int i, const int p) {
if(p >= 0 and low.ord[p] >= low.low[i]) comp[i] = comp[p];
else comp[i] = k++;
for(const Edge<T>& e : g[i]) {
if(comp[e.to] == -1) dfs(g, e.to, i);
}
}
};
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 4 "src/graph/low_link.hpp"
template <typename T>
struct LowLink {
vector<int> ord, low, articulation;
vector<pair<int, int>> bridge;
LowLink(const Graph<T>& g)
: ord(g.size(), -1), low(g.size(), -1) {
for(int i = 0, k = 0; i < g.size(); ++i) {
if(ord[i] == -1) k = dfs(g, i, k, -1);
}
}
private:
int dfs(const Graph<T>& g, const int idx, int k, const int par) {
low[idx] = (ord[idx] = k++);
int cnt = 0;
bool arti = false, second = false;
for(const Edge<T>& e : g[idx]) {
const int to = e.to;
if(ord[to] == -1) {
++cnt;
k = dfs(g, to, k, idx);
low[idx] = min(low[idx], low[to]);
arti |= (par != -1) and (low[to] >= ord[idx]);
if(ord[idx] < low[to]) {
bridge.emplace_back(minmax(idx, to));
}
} else if(to != par or second) {
low[idx] = min(low[idx], ord[to]);
} else {
second = true;
}
}
arti |= (par == -1) and (cnt > 1);
if(arti) articulation.emplace_back(idx);
return k;
}
};
#line 5 "src/graph/two_edge_connected_components.hpp"
template <typename T>
struct TwoEdgeConnectedComponents {
vector<vector<int>> groups, tree;
TwoEdgeConnectedComponents(const Graph<T>& g)
: n(g.size()), k(0), low(g), comp(n, -1) {
for(int i = 0; i < n; ++i) {
if(comp[i] == -1) dfs(g, i, -1);
}
groups.resize(k);
tree.resize(k);
for(int i = 0; i < n; ++i) {
groups[comp[i]].emplace_back(i);
}
for(const pair<int, int>& e : low.bridge) {
int u = comp[e.first], v = comp[e.second];
tree[u].emplace_back(v);
tree[v].emplace_back(u);
}
}
inline int operator[](const int& i) const {
assert(0 <= i and i < n);
return comp[i];
}
private:
int n, k;
LowLink<T> low;
vector<int> comp;
void dfs(const Graph<T>& g, const int i, const int p) {
if(p >= 0 and low.ord[p] >= low.low[i]) comp[i] = comp[p];
else comp[i] = k++;
for(const Edge<T>& e : g[i]) {
if(comp[e.to] == -1) dfs(g, e.to, i);
}
}
};