This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/graph/min_cost_flow.hpp"
最小費用流問題 を解くライブラリです.
MinCostFlow<Cap, Cost> graph(int n)
Cap
は容量の型, Cost
はコストの型です.計算量
int graph.add_edge(int from, int to, Cap cap, Cost cost)
from
から to
へ最大容量 cap
,コスト cost
の辺を追加し,何番目に追加された辺かを返します.
制約
計算量
(1) pair<Cap, Cost> graph.flow(int s, int t)
(2) pair<Cap, Cost> graph.flow(int s, int t, Cap flow_limit)
$s$ から $t$ へ流せるだけ流し,その流量とコストを返します.
flow_limit
まで流せるだけ流します.制約
slope
と同じ.計算量
slope
と同じ.vector<pair<Cap, Cost>> graph.slope(int s, int t)
vector<pair<Cap, Cost>> graph.slope(int s, int t, Cap flow_limit)
返り値に流量とコストの関係の折れ線が入ります.
全ての $x$ について,流量 $x$ の時の最小コストを $g(x)$ とすると, $(x, g(x))$ は返り値を折れ線として見たものに含まれます.
.first
, .second
は共に狭義単調増加.制約
辺のコストの最大を $x$ として
slope
や max_flow
を合わせて複数回呼んだときの挙動は未定義.s
から t
へ流したフローの流量が Cap
に収まる.Cost
に収まる.計算量
$F$ を流量, $m$ を追加した辺の本数として
struct edge<Cap, Cost> {
int from, to;
Cap cap, flow;
Cost cost;
};
(1) MinCostFlow<Cap, Cost>::edge graph.get_edge(int i)
(2) vector<MinCostFlow<Cap, Cost>::edge> graph.edges()
add_edge
で追加された順番と同一です.$m$ を追加された辺数として
制約
計算量
#pragma once
#include "../template/template.hpp"
namespace internal {
template <class E>
struct csr {
vector<int> start;
vector<E> elist;
explicit csr(const int n, const vector<pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for(const auto& e : edges) {
++start[e.first + 1];
}
for(int i = 1; i <= n; ++i) {
start[i] += start[i - 1];
}
auto counter = start;
for(const auto& e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
template <class T>
struct simple_queue {
vector<T> payload;
int pos = 0;
void reserve(const int n) {
payload.reserve(n);
}
int size() const {
return (int)payload.size() - pos;
}
bool empty() const {
return pos == (int)payload.size();
}
void push(const T& t) {
payload.emplace_back(t);
}
T& front() const {
return payload[pos];
}
void clear() {
payload.clear();
pos = 0;
}
void pop() {
++pos;
}
};
} // namespace internal
template <class Cap, class Cost>
struct MinCostFlow {
public:
MinCostFlow() {}
explicit MinCostFlow(const int n)
: _n(n) {}
int add_edge(const int from, const int to, const Cap& cap, const Cost& cost) {
assert(0 <= from and from < _n);
assert(0 <= to and to < _n);
assert(0 <= cap);
assert(0 <= cost);
const int m = (int)_edges.size();
_edges.push_back({from, to, cap, Cap(0), cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(const int i) const {
const int m = (int)_edges.size();
assert(0 <= i and i < m);
return _edges[i];
}
vector<edge> edges() const {
return _edges;
}
pair<Cap, Cost> flow(const int s, const int t) {
return flow(s, t, numeric_limits<Cap>::max());
}
pair<Cap, Cost> flow(const int s, const int t, const Cap& flow_limit) {
return slope(s, t, flow_limit).back();
}
vector<pair<Cap, Cost>> slope(const int s, const int t) {
return slope(s, t, numeric_limits<Cap>::max());
}
vector<pair<Cap, Cost>> slope(const int s, const int t, const Cap& flow_limit) {
assert(0 <= s and s < _n);
assert(0 <= t and t < _n);
assert(s != t);
const int m = (int)_edges.size();
vector<int> edge_idx(m);
auto g = [&]() {
vector<int> degree(_n), redge_idx(m);
vector<pair<int, _edge>> elist;
elist.reserve(2 * m);
for(int i = 0; i < m; ++i) {
const auto e = _edges[i];
edge_idx[i] = degree[e.from]++;
redge_idx[i] = degree[e.to]++;
elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
}
auto _g = internal::csr<_edge>(_n, elist);
for(int i = 0; i < m; ++i) {
const auto e = _edges[i];
edge_idx[i] += _g.start[e.from];
redge_idx[i] += _g.start[e.to];
_g.elist[edge_idx[i]].rev = redge_idx[i];
_g.elist[redge_idx[i]].rev = edge_idx[i];
}
return _g;
}();
const auto result = slope(g, s, t, flow_limit);
for(int i = 0; i < m; ++i) {
const auto e = g.elist[edge_idx[i]];
_edges[i].flow = _edges[i].cap - e.cap;
}
return result;
}
private:
int _n;
vector<edge> _edges;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
vector<pair<Cap, Cost>> slope(internal::csr<_edge>& g, const int s, const int t, const Cap& flow_limit) {
vector<pair<Cost, Cost>> dual_dist(_n);
vector<int> prev_e(_n);
vector<bool> vis(_n);
struct Q {
Cost key;
int to;
inline bool operator<(const Q& r) const {
return key > r.key;
}
};
vector<int> que_min;
vector<Q> que;
auto dual_ref = [&]() {
for(int i = 0; i < _n; ++i) {
dual_dist[i].second = numeric_limits<Cost>::max();
}
fill(vis.begin(), vis.end(), false);
que_min.clear();
que.clear();
size_t heap_r = 0;
dual_dist[s].second = 0;
que_min.emplace_back(s);
while(!que_min.empty() or !que.empty()) {
int v;
if(!que_min.empty()) {
v = que_min.back();
que_min.pop_back();
} else {
while(heap_r < que.size()) {
++heap_r;
push_heap(que.begin(), que.begin() + heap_r);
}
v = que.front().to;
pop_heap(que.begin(), que.end());
que.pop_back();
--heap_r;
}
if(vis[v]) continue;
vis[v] = true;
if(v == t) break;
const Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
for(int i = g.start[v]; i < g.start[v + 1]; ++i) {
const auto e = g.elist[i];
if(!e.cap) continue;
const Cost cost = e.cost - dual_dist[e.to].first + dual_v;
if(dual_dist[e.to].second - dist_v > cost) {
const Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
if(dist_to == dist_v) {
que_min.emplace_back(e.to);
} else {
que.push_back({dist_to, e.to});
}
}
}
}
if(!vis[t]) {
return false;
}
for(int v = 0; v < _n; ++v) {
if(!vis[v]) continue;
dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
vector<pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
while(flow < flow_limit) {
if(!dual_ref()) break;
Cap c = flow_limit - flow;
for(int v = t; v != s; v = g.elist[prev_e[v]].to) {
c = min(c, g.elist[g.elist[prev_e[v]].rev].cap);
}
for(int v = t; v != s; v = g.elist[prev_e[v]].to) {
auto& e = g.elist[prev_e[v]];
e.cap += c;
g.elist[e.rev].cap -= c;
}
const Cost d = -dual_dist[s].first;
flow += c;
cost += c * d;
if(prev_cost_per_flow == d) {
result.pop_back();
}
result.emplace_back(flow, cost);
prev_cost_per_flow = d;
}
return result;
}
};
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/min_cost_flow.hpp"
namespace internal {
template <class E>
struct csr {
vector<int> start;
vector<E> elist;
explicit csr(const int n, const vector<pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for(const auto& e : edges) {
++start[e.first + 1];
}
for(int i = 1; i <= n; ++i) {
start[i] += start[i - 1];
}
auto counter = start;
for(const auto& e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
template <class T>
struct simple_queue {
vector<T> payload;
int pos = 0;
void reserve(const int n) {
payload.reserve(n);
}
int size() const {
return (int)payload.size() - pos;
}
bool empty() const {
return pos == (int)payload.size();
}
void push(const T& t) {
payload.emplace_back(t);
}
T& front() const {
return payload[pos];
}
void clear() {
payload.clear();
pos = 0;
}
void pop() {
++pos;
}
};
} // namespace internal
template <class Cap, class Cost>
struct MinCostFlow {
public:
MinCostFlow() {}
explicit MinCostFlow(const int n)
: _n(n) {}
int add_edge(const int from, const int to, const Cap& cap, const Cost& cost) {
assert(0 <= from and from < _n);
assert(0 <= to and to < _n);
assert(0 <= cap);
assert(0 <= cost);
const int m = (int)_edges.size();
_edges.push_back({from, to, cap, Cap(0), cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(const int i) const {
const int m = (int)_edges.size();
assert(0 <= i and i < m);
return _edges[i];
}
vector<edge> edges() const {
return _edges;
}
pair<Cap, Cost> flow(const int s, const int t) {
return flow(s, t, numeric_limits<Cap>::max());
}
pair<Cap, Cost> flow(const int s, const int t, const Cap& flow_limit) {
return slope(s, t, flow_limit).back();
}
vector<pair<Cap, Cost>> slope(const int s, const int t) {
return slope(s, t, numeric_limits<Cap>::max());
}
vector<pair<Cap, Cost>> slope(const int s, const int t, const Cap& flow_limit) {
assert(0 <= s and s < _n);
assert(0 <= t and t < _n);
assert(s != t);
const int m = (int)_edges.size();
vector<int> edge_idx(m);
auto g = [&]() {
vector<int> degree(_n), redge_idx(m);
vector<pair<int, _edge>> elist;
elist.reserve(2 * m);
for(int i = 0; i < m; ++i) {
const auto e = _edges[i];
edge_idx[i] = degree[e.from]++;
redge_idx[i] = degree[e.to]++;
elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
}
auto _g = internal::csr<_edge>(_n, elist);
for(int i = 0; i < m; ++i) {
const auto e = _edges[i];
edge_idx[i] += _g.start[e.from];
redge_idx[i] += _g.start[e.to];
_g.elist[edge_idx[i]].rev = redge_idx[i];
_g.elist[redge_idx[i]].rev = edge_idx[i];
}
return _g;
}();
const auto result = slope(g, s, t, flow_limit);
for(int i = 0; i < m; ++i) {
const auto e = g.elist[edge_idx[i]];
_edges[i].flow = _edges[i].cap - e.cap;
}
return result;
}
private:
int _n;
vector<edge> _edges;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
vector<pair<Cap, Cost>> slope(internal::csr<_edge>& g, const int s, const int t, const Cap& flow_limit) {
vector<pair<Cost, Cost>> dual_dist(_n);
vector<int> prev_e(_n);
vector<bool> vis(_n);
struct Q {
Cost key;
int to;
inline bool operator<(const Q& r) const {
return key > r.key;
}
};
vector<int> que_min;
vector<Q> que;
auto dual_ref = [&]() {
for(int i = 0; i < _n; ++i) {
dual_dist[i].second = numeric_limits<Cost>::max();
}
fill(vis.begin(), vis.end(), false);
que_min.clear();
que.clear();
size_t heap_r = 0;
dual_dist[s].second = 0;
que_min.emplace_back(s);
while(!que_min.empty() or !que.empty()) {
int v;
if(!que_min.empty()) {
v = que_min.back();
que_min.pop_back();
} else {
while(heap_r < que.size()) {
++heap_r;
push_heap(que.begin(), que.begin() + heap_r);
}
v = que.front().to;
pop_heap(que.begin(), que.end());
que.pop_back();
--heap_r;
}
if(vis[v]) continue;
vis[v] = true;
if(v == t) break;
const Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
for(int i = g.start[v]; i < g.start[v + 1]; ++i) {
const auto e = g.elist[i];
if(!e.cap) continue;
const Cost cost = e.cost - dual_dist[e.to].first + dual_v;
if(dual_dist[e.to].second - dist_v > cost) {
const Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
if(dist_to == dist_v) {
que_min.emplace_back(e.to);
} else {
que.push_back({dist_to, e.to});
}
}
}
}
if(!vis[t]) {
return false;
}
for(int v = 0; v < _n; ++v) {
if(!vis[v]) continue;
dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
vector<pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
while(flow < flow_limit) {
if(!dual_ref()) break;
Cap c = flow_limit - flow;
for(int v = t; v != s; v = g.elist[prev_e[v]].to) {
c = min(c, g.elist[g.elist[prev_e[v]].rev].cap);
}
for(int v = t; v != s; v = g.elist[prev_e[v]].to) {
auto& e = g.elist[prev_e[v]];
e.cap += c;
g.elist[e.rev].cap -= c;
}
const Cost d = -dual_dist[s].first;
flow += c;
cost += c * d;
if(prev_cost_per_flow == d) {
result.pop_back();
}
result.emplace_back(flow, cost);
prev_cost_per_flow = d;
}
return result;
}
};