This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/graph/counting_spanning_tree_undirected.hpp"
T counting_spanning_tree_undirected(Graph<U> g)
無向グラフ $G$ の全域木の個数を返します.
制約
計算量
$G$ の頂点数と辺数をそれぞれ $N, M$ として,
#pragma once
#include "../template/template.hpp"
#include "../graph/graph_template.hpp"
#include "../matrix/matrix.hpp"
#include "../matrix/gauss_elimination.hpp"
template <typename T, typename U>
T counting_spanning_tree_undirected(const Graph<U>& g) {
const int n = g.size();
Matrix<T> mat(n, n);
for(int i = 0; i < n; ++i) {
mat[i][i] = (int)g[i].size();
for(const auto& e : g[i]) {
--mat[i][e.to];
}
}
Matrix<T> lap(n - 1, n - 1);
for(int i = 0; i < n - 1; ++i) {
for(int j = 0; j < n - 1; ++j) {
lap[i][j] = mat[i][j];
}
}
return gauss_elimination(lap).second;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 3 "src/matrix/matrix.hpp"
template <typename T>
struct Matrix {
Matrix(const int h, const int w, const T& val = 0)
: h(h), w(w), A(h, vector<T>(w, val)) {}
int H() const {
return h;
}
int W() const {
return w;
}
const vector<T>& operator[](const int i) const {
assert(0 <= i and i < h);
return A[i];
}
vector<T>& operator[](const int i) {
assert(0 <= i and i < h);
return A[i];
}
static Matrix I(const int n) {
Matrix mat(n, n);
for(int i = 0; i < n; ++i) mat[i][i] = 1;
return mat;
}
Matrix& operator+=(const Matrix& B) {
assert(h == B.h and w == B.w);
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
(*this)[i][j] += B[i][j];
}
}
return (*this);
}
Matrix& operator-=(const Matrix& B) {
assert(h == B.h and w == B.w);
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
(*this)[i][j] -= B[i][j];
}
}
return (*this);
}
Matrix& operator*=(const Matrix& B) {
assert(w == B.h);
vector<vector<T>> C(h, vector<T>(B.w, 0));
for(int i = 0; i < h; ++i) {
for(int k = 0; k < w; ++k) {
for(int j = 0; j < B.w; ++j) {
C[i][j] += (*this)[i][k] * B[k][j];
}
}
}
A.swap(C);
return (*this);
}
Matrix& pow(long long t) {
assert(h == w);
assert(t >= 0);
Matrix B = Matrix::I(h);
while(t > 0) {
if(t & 1ll) B *= (*this);
(*this) *= (*this);
t >>= 1ll;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix& B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix& B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix& B) const {
return (Matrix(*this) *= B);
}
bool operator==(const Matrix& B) const {
assert(h == B.H() and w == B.W());
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
if(A[i][j] != B[i][j]) return false;
}
}
return true;
}
bool operator!=(const Matrix& B) const {
assert(h == B.H() and w == B.W());
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) {
if(A[i][j] != B[i][j]) return true;
}
}
return false;
}
private:
int h, w;
vector<vector<T>> A;
};
#line 4 "src/matrix/gauss_elimination.hpp"
template <typename T>
pair<int, T> gauss_elimination(Matrix<T>& a, int pivot_end = -1) {
const int h = a.H(), w = a.W();
int rank = 0;
assert(-1 <= pivot_end and pivot_end <= w);
if(pivot_end == -1) pivot_end = w;
T det = 1;
for(int j = 0; j < pivot_end; ++j) {
int idx = -1;
for(int i = rank; i < h; ++i) {
if(a[i][j] != T(0)) {
idx = i;
break;
}
}
if(idx == -1) {
det = 0;
continue;
}
if(rank != idx) det = -det, swap(a[rank], a[idx]);
det *= a[rank][j];
if(a[rank][j] != T(1)) {
const T coeff = T(1) / a[rank][j];
for(int k = j; k < w; ++k) a[rank][k] *= coeff;
}
for(int i = 0; i < h; ++i) {
if(i == rank) continue;
if(a[i][j] != T(0)) {
const T coeff = a[i][j] / a[rank][j];
for(int k = j; k < w; ++k) a[i][k] -= a[rank][k] * coeff;
}
}
++rank;
}
return {rank, det};
}
#line 6 "src/graph/counting_spanning_tree_undirected.hpp"
template <typename T, typename U>
T counting_spanning_tree_undirected(const Graph<U>& g) {
const int n = g.size();
Matrix<T> mat(n, n);
for(int i = 0; i < n; ++i) {
mat[i][i] = (int)g[i].size();
for(const auto& e : g[i]) {
--mat[i][e.to];
}
}
Matrix<T> lap(n - 1, n - 1);
for(int i = 0; i < n - 1; ++i) {
for(int j = 0; j < n - 1; ++j) {
lap[i][j] = mat[i][j];
}
}
return gauss_elimination(lap).second;
}