This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/graph/bipartite.hpp"
vector<int> bipartite(Graph<T> g)
$n$ 頂点 $m$ 辺の無向グラフ g
が二部グラフかどうか判定します.
g
が二部グラフである場合, g
の各頂点を $0$ と $1$ で彩色した配列を返します.
二部グラフでない場合は空の配列を返します.
計算量
#pragma once
#include "../template/template.hpp"
#include "./graph_template.hpp"
template <typename T>
vector<int> bipartite(const Graph<T>& g) {
const int n = g.size();
vector<int> color(n, -1);
auto dfs = [&](const auto& dfs, const int cur, const int col) -> bool {
color[cur] = col;
for(const Edge<T>& e : g[cur]) {
if(color[e.to] == col) return false;
if(color[e.to] == -1 and !dfs(dfs, e.to, 1 - col)) return false;
}
return true;
};
for(int i = 0; i < n; ++i) {
if(color[i] != -1) continue;
if(!dfs(dfs, i, 0)) return {};
}
return color;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 4 "src/graph/bipartite.hpp"
template <typename T>
vector<int> bipartite(const Graph<T>& g) {
const int n = g.size();
vector<int> color(n, -1);
auto dfs = [&](const auto& dfs, const int cur, const int col) -> bool {
color[cur] = col;
for(const Edge<T>& e : g[cur]) {
if(color[e.to] == col) return false;
if(color[e.to] == -1 and !dfs(dfs, e.to, 1 - col)) return false;
}
return true;
};
for(int i = 0; i < n; ++i) {
if(color[i] != -1) continue;
if(!dfs(dfs, i, 0)) return {};
}
return color;
}