This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/graph/bfs.hpp"
vector<pair<int, int>> bfs(Graph<int> g, int s = 0)
$n$ 頂点の重みなしグラフ g
上で頂点 s
を始点とした最短経路探索を行います.
返り値は長さ $n$ の pair
型の配列です.
pair
型の第一要素は頂点 s
から頂点 i
までの最短距離を,第二要素は頂点 i
にたどり着く直前にいた頂点番号を保持しています.
もし頂点 i
に到達できない場合, pair
型の第一要素は numeric_limits<int>::max()
で,第二要素は $-1$ です.
制約
assert
等で検知されません).計算量
#pragma once
#include "../template/template.hpp"
#include "./graph_template.hpp"
vector<pair<int, int>> bfs(const Graph<int>& g, const int s = 0) {
const int n = g.size();
assert(0 <= s and s < n);
vector<pair<int, int>> d(n, {numeric_limits<int>::max(), -1});
queue<int> q;
d[s] = {0, -1};
q.emplace(s);
while(!q.empty()) {
const int cur = q.front();
q.pop();
for(const Edge<int>& e : g[cur]) {
if(d[e.to].first == numeric_limits<int>::max()) {
d[e.to] = {d[cur].first + 1, cur};
q.emplace(e.to);
}
}
}
return d;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/graph/graph_template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
int idx;
Edge()
: from(-1), to(-1), cost(-1), idx(-1) {}
Edge(const int from, const int to, const T& cost = 1, const int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const {
return to;
}
};
template <typename T>
struct Graph {
Graph(const int N)
: n(N), es(0), g(N) {}
int size() const {
return n;
}
int edge_size() const {
return es;
}
void add_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void add_directed_edge(const int from, const int to, const T& cost = 1) {
assert(0 <= from and from < n);
assert(0 <= to and to < n);
g[from].emplace_back(from, to, cost, es++);
}
inline vector<Edge<T>>& operator[](const int& k) {
assert(0 <= k and k < n);
return g[k];
}
inline const vector<Edge<T>>& operator[](const int& k) const {
assert(0 <= k and k < n);
return g[k];
}
private:
int n, es;
vector<vector<Edge<T>>> g;
};
template <typename T>
using Edges = vector<Edge<T>>;
#line 4 "src/graph/bfs.hpp"
vector<pair<int, int>> bfs(const Graph<int>& g, const int s = 0) {
const int n = g.size();
assert(0 <= s and s < n);
vector<pair<int, int>> d(n, {numeric_limits<int>::max(), -1});
queue<int> q;
d[s] = {0, -1};
q.emplace(s);
while(!q.empty()) {
const int cur = q.front();
q.pop();
for(const Edge<int>& e : g[cur]) {
if(d[e.to].first == numeric_limits<int>::max()) {
d[e.to] = {d[cur].first + 1, cur};
q.emplace(e.to);
}
}
}
return d;
}