This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/fps/berlekamp_massey.hpp"
FPS<mint> berlekamp_massey(FPS<mint> s)
斉次線形漸化式
\[a_i = \sum\limits_{j = 0}^{d - 1} c_j a_{i - 1 - j}\]の形で表される線形回帰数列 $a$ の前 $N$ 項が与えられたときに,数列 $c$ を返します.
$c$ を一意に確定させるためには $N \geq 2d$ が必要です.
$c$ が一意に定まらない場合,条件を満たす $c$ のうち,最も $d$ を小さいものを返します.
計算量
#pragma once
#include "../template/template.hpp"
template <template <typename> typename FPS, typename mint>
FPS<mint> berlekamp_massey(const FPS<mint>& s) {
const int n = (int)s.size();
FPS<mint> b = {mint(-1)}, c = {mint(-1)};
mint y = mint(1);
for(int ed = 1; ed <= n; ++ed) {
int l = (int)c.size(), m = (int)b.size();
mint x = 0;
for(int i = 0; i < l; ++i) x += c[i] * s[ed - l + i];
b.emplace_back(0);
++m;
if(x == mint(0)) continue;
const mint freq = x / y;
if(l < m) {
const auto tmp = c;
c.insert(begin(c), m - l, mint(0));
for(int i = 0; i < m; ++i) c[m - 1 - i] -= freq * b[m - 1 - i];
b = tmp;
y = x;
} else {
for(int i = 0; i < m; ++i) c[l - 1 - i] -= freq * b[m - 1 - i];
}
}
c.pop_back();
c = c.rev();
return c;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/fps/berlekamp_massey.hpp"
template <template <typename> typename FPS, typename mint>
FPS<mint> berlekamp_massey(const FPS<mint>& s) {
const int n = (int)s.size();
FPS<mint> b = {mint(-1)}, c = {mint(-1)};
mint y = mint(1);
for(int ed = 1; ed <= n; ++ed) {
int l = (int)c.size(), m = (int)b.size();
mint x = 0;
for(int i = 0; i < l; ++i) x += c[i] * s[ed - l + i];
b.emplace_back(0);
++m;
if(x == mint(0)) continue;
const mint freq = x / y;
if(l < m) {
const auto tmp = c;
c.insert(begin(c), m - l, mint(0));
for(int i = 0; i < m; ++i) c[m - 1 - i] -= freq * b[m - 1 - i];
b = tmp;
y = x;
} else {
for(int i = 0; i < m; ++i) c[l - 1 - i] -= freq * b[m - 1 - i];
}
}
c.pop_back();
c = c.rev();
return c;
}