Fu_L's Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub Fu-L/cp-library

:heavy_check_mark: FenwickTree2D
(src/data_structure/fenwick_tree_2d.hpp)

FenwickTree2D

サイズが $N \times M$ である $2$ 次元配列に対し,

を $O(\log N \log M)$ 時間で処理することができます.

コンストラクタ

FenwickTree2D<T> fw(int n, int m)

計算量

add

void fw.add(int i, int j, T x)

fw[i][j] += x をします.

制約

計算量

sum

T fw.sum(int li, int lj, int ri, int rj)

長方形領域 $[li, ri) \times [lj, rj)$ における配列 fw の総和を返します.

制約

計算量

get

T fw.get(int i, int j)

fw[i][j] を返します.

制約

計算量

Depends on

Verified with

Code

#pragma once
#include "../template/template.hpp"
template <typename T>
struct FenwickTree2D {
    FenwickTree2D(const int H, const int W)
        : h(H), w(W), data(H + 1, vector<T>(W + 1, 0)) {}
    void add(const int i, const int j, const T& z) {
        assert(0 <= i and i < h);
        assert(0 <= j and j < w);
        for(int x = i + 1; x <= h; x += x & -x) {
            for(int y = j + 1; y <= w; y += y & -y) {
                data[x - 1][y - 1] += z;
            }
        }
    }
    T sum(const int li, const int lj, const int ri, const int rj) const {
        assert(0 <= li and li <= ri and ri <= h);
        assert(0 <= lj and lj <= rj and rj <= w);
        return sum(ri, rj) - sum(li, rj) - sum(ri, lj) + sum(li, lj);
    }
    T get(const int i, const int j) const {
        assert(0 <= i and i < h);
        assert(0 <= j and j < w);
        return sum(i + 1, j + 1) - sum(i, j + 1) - sum(i + 1, j) + sum(i, j);
    }

   private:
    int h, w;
    vector<vector<T>> data;
    inline T sum(const int i, const int j) const {
        T s = 0;
        for(int x = i; x > 0; x -= x & -x) {
            for(int y = j; y > 0; y -= y & -y) {
                s += data[x - 1][y - 1];
            }
        }
        return s;
    }
};
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
    SetupIO() {
        ios::sync_with_stdio(0);
        cin.tie(0);
        cout << fixed << setprecision(30);
    }
} setup_io;
#line 3 "src/data_structure/fenwick_tree_2d.hpp"
template <typename T>
struct FenwickTree2D {
    FenwickTree2D(const int H, const int W)
        : h(H), w(W), data(H + 1, vector<T>(W + 1, 0)) {}
    void add(const int i, const int j, const T& z) {
        assert(0 <= i and i < h);
        assert(0 <= j and j < w);
        for(int x = i + 1; x <= h; x += x & -x) {
            for(int y = j + 1; y <= w; y += y & -y) {
                data[x - 1][y - 1] += z;
            }
        }
    }
    T sum(const int li, const int lj, const int ri, const int rj) const {
        assert(0 <= li and li <= ri and ri <= h);
        assert(0 <= lj and lj <= rj and rj <= w);
        return sum(ri, rj) - sum(li, rj) - sum(ri, lj) + sum(li, lj);
    }
    T get(const int i, const int j) const {
        assert(0 <= i and i < h);
        assert(0 <= j and j < w);
        return sum(i + 1, j + 1) - sum(i, j + 1) - sum(i + 1, j) + sum(i, j);
    }

   private:
    int h, w;
    vector<vector<T>> data;
    inline T sum(const int i, const int j) const {
        T s = 0;
        for(int x = i; x > 0; x -= x & -x) {
            for(int y = j; y > 0; y -= y & -y) {
                s += data[x - 1][y - 1];
            }
        }
        return s;
    }
};
Back to top page