This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/data_structure/dynamic_li_chao_tree.hpp"
を処理するデータ構造です.
ConvexHullTrick
よりやや計算量は重いですが,単調性が必要ありません.
DynamicLiChaoTree<T, T x_low, T x_high> cht
空の直線・線分群 cht
を構築します.
$x_{low}$ には query
で与える $x$ の最小値を, $x_{high}$ には query
で与える $x$ の最大値を与えてください.
以下, $V = x_{high} - x_{low}$ とおきます.
計算量
void cht.add_line(T a, T b)
cht
に直線 $y = ax + b$ を追加します.
計算量
void cht.add_segment(T l, T r, T a, T b)
cht
に線分 $y = ax + b ~ (l \leq x < r)$ を追加します.
計算量
T cht(T x)
与えられた $x$ 座標における,直線・線分群 cht
の $y$ 座標の最小値を取得します.
制約
計算量
#pragma once
#include "../template/template.hpp"
template <typename T, T x_low, T x_high>
struct DynamicLiChaoTree {
DynamicLiChaoTree()
: root{nullptr} {}
void add_line(const T& a, const T& b) {
Line x(a, b);
root = add_line(root, x, x_low, x_high, x.get(x_low), x.get(x_high));
}
void add_segment(const T& l, const T& r, const T& a, const T& b) {
Line x(a, b);
root = add_segment(root, x, l, r - 1, x_low, x_high, x.get(x_low), x.get(x_high));
}
T operator()(const T& x) const {
assert(x_low <= x and x <= x_high);
return query(root, x_low, x_high, x);
}
private:
struct Line {
T a, b;
Line(const T& a, const T& b)
: a(a), b(b) {}
inline T get(const T& x) const {
return a * x + b;
}
};
struct Node {
Line x;
Node *l, *r;
Node(const Line& x)
: x{x}, l{nullptr}, r{nullptr} {}
};
const T id = numeric_limits<T>::max();
Node* root;
Node* add_line(Node* t, Line& x, const T& l, const T& r, const T& x_l, const T& x_r) {
if(!t) return new Node(x);
T t_l = t->x.get(l), t_r = t->x.get(r);
if(t_l <= x_l and t_r <= x_r) {
return t;
} else if(t_l >= x_l and t_r >= x_r) {
t->x = x;
return t;
} else {
T m = (l + r) / 2;
if(m == r) --m;
T t_m = t->x.get(m), x_m = x.get(m);
if(t_m > x_m) {
swap(t->x, x);
if(x_l >= t_l) t->l = add_line(t->l, x, l, m, t_l, t_m);
else t->r = add_line(t->r, x, m + 1, r, t_m + x.a, t_r);
} else {
if(t_l >= x_l) t->l = add_line(t->l, x, l, m, x_l, x_m);
else t->r = add_line(t->r, x, m + 1, r, x_m + x.a, x_r);
}
return t;
}
}
Node* add_segment(Node* t, Line& x, const T& a, const T& b, const T& l, const T& r, const T& x_l, const T& x_r) {
if(r < a or b < l) return t;
if(a <= l and r <= b) {
Line y{x};
return add_line(t, y, l, r, x_l, x_r);
}
if(t) {
T t_l = t->x.get(l), t_r = t->x.get(r);
if(t_l <= x_l and t_r <= x_r) return t;
} else {
t = new Node(Line(0, id));
}
T m = (l + r) / 2;
if(m == r) --m;
T x_m = x.get(m);
t->l = add_segment(t->l, x, a, b, l, m, x_l, x_m);
t->r = add_segment(t->r, x, a, b, m + 1, r, x_m + x.a, x_r);
return t;
}
T query(const Node* t, const T& l, const T& r, const T& x) const {
if(!t) return id;
if(l == r) return t->x.get(x);
T m = (l + r) / 2;
if(m == r) --m;
if(x <= m) return min(t->x.get(x), query(t->l, l, m, x));
else return min(t->x.get(x), query(t->r, m + 1, r, x));
}
};
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/data_structure/dynamic_li_chao_tree.hpp"
template <typename T, T x_low, T x_high>
struct DynamicLiChaoTree {
DynamicLiChaoTree()
: root{nullptr} {}
void add_line(const T& a, const T& b) {
Line x(a, b);
root = add_line(root, x, x_low, x_high, x.get(x_low), x.get(x_high));
}
void add_segment(const T& l, const T& r, const T& a, const T& b) {
Line x(a, b);
root = add_segment(root, x, l, r - 1, x_low, x_high, x.get(x_low), x.get(x_high));
}
T operator()(const T& x) const {
assert(x_low <= x and x <= x_high);
return query(root, x_low, x_high, x);
}
private:
struct Line {
T a, b;
Line(const T& a, const T& b)
: a(a), b(b) {}
inline T get(const T& x) const {
return a * x + b;
}
};
struct Node {
Line x;
Node *l, *r;
Node(const Line& x)
: x{x}, l{nullptr}, r{nullptr} {}
};
const T id = numeric_limits<T>::max();
Node* root;
Node* add_line(Node* t, Line& x, const T& l, const T& r, const T& x_l, const T& x_r) {
if(!t) return new Node(x);
T t_l = t->x.get(l), t_r = t->x.get(r);
if(t_l <= x_l and t_r <= x_r) {
return t;
} else if(t_l >= x_l and t_r >= x_r) {
t->x = x;
return t;
} else {
T m = (l + r) / 2;
if(m == r) --m;
T t_m = t->x.get(m), x_m = x.get(m);
if(t_m > x_m) {
swap(t->x, x);
if(x_l >= t_l) t->l = add_line(t->l, x, l, m, t_l, t_m);
else t->r = add_line(t->r, x, m + 1, r, t_m + x.a, t_r);
} else {
if(t_l >= x_l) t->l = add_line(t->l, x, l, m, x_l, x_m);
else t->r = add_line(t->r, x, m + 1, r, x_m + x.a, x_r);
}
return t;
}
}
Node* add_segment(Node* t, Line& x, const T& a, const T& b, const T& l, const T& r, const T& x_l, const T& x_r) {
if(r < a or b < l) return t;
if(a <= l and r <= b) {
Line y{x};
return add_line(t, y, l, r, x_l, x_r);
}
if(t) {
T t_l = t->x.get(l), t_r = t->x.get(r);
if(t_l <= x_l and t_r <= x_r) return t;
} else {
t = new Node(Line(0, id));
}
T m = (l + r) / 2;
if(m == r) --m;
T x_m = x.get(m);
t->l = add_segment(t->l, x, a, b, l, m, x_l, x_m);
t->r = add_segment(t->r, x, a, b, m + 1, r, x_m + x.a, x_r);
return t;
}
T query(const Node* t, const T& l, const T& r, const T& x) const {
if(!t) return id;
if(l == r) return t->x.get(x);
T m = (l + r) / 2;
if(m == r) --m;
if(x <= m) return min(t->x.get(x), query(t->l, l, m, x));
else return min(t->x.get(x), query(t->r, m + 1, r, x));
}
};