This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/convolution/gcd_convolution.hpp"
vector<T> gcd_convolution(vector<T> a, vector<T> b)
GCD畳み込みを行います.
長さ $N$ の数列 $a$ と $b$ から,長さ $N$ の数列,
を計算します.
制約
計算量
#pragma once
#include "../template/template.hpp"
#include "../math/divisor_multiple_transform.hpp"
template <typename mint>
vector<mint> gcd_convolution(const vector<mint>& a, const vector<mint>& b) {
assert(a.size() == b.size());
auto s = a, t = b;
MultipleTransform::zeta_transform(s);
MultipleTransform::zeta_transform(t);
for(int i = 0; i < (int)a.size(); ++i) s[i] *= t[i];
MultipleTransform::moebius_transform(s);
return s;
}
#line 2 "src/template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<long long, long long>;
#define rep(i, a, b) for(long long i = (a); i < (b); ++i)
#define rrep(i, a, b) for(long long i = (a); i >= (b); --i)
constexpr long long inf = 4e18;
struct SetupIO {
SetupIO() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(30);
}
} setup_io;
#line 3 "src/math/eratosthenes_sieve.hpp"
struct EratosthenesSieve {
vector<int> primes, min_factor, moebius, euler;
EratosthenesSieve(const int N)
: primes(), min_factor(N + 1), moebius(N + 1, 1), euler(N + 1), N(N) {
assert(N >= 1);
iota(min_factor.begin(), min_factor.end(), 0);
min_factor[0] = min_factor[1] = -1;
iota(euler.begin(), euler.end(), 0);
for(int i = 2; i <= N; ++i) {
if(min_factor[i] < i) continue;
primes.emplace_back(i);
moebius[i] = -1;
euler[i] = euler[i] / i * (i - 1);
for(int j = i * 2; j <= N; j += i) {
if(min_factor[j] == j) min_factor[j] = i;
if((j / i) % i == 0) moebius[j] = 0;
else moebius[j] = -moebius[j];
euler[j] = euler[j] / i * (i - 1);
}
}
}
vector<pair<int, int>> prime_factors(int n) const {
assert(1 <= n and n <= N);
vector<pair<int, int>> res;
while(n > 1) {
const int p = min_factor[n];
int exp = 0;
while(min_factor[n] == p) {
n /= p;
++exp;
}
res.emplace_back(p, exp);
}
return res;
}
vector<int> divisor(const int n) const {
assert(1 <= n and n <= n);
vector<int> res({1});
const auto pf = prime_factors(n);
for(const auto& p : pf) {
const int s = (int)res.size();
for(int i = 0; i < s; ++i) {
int v = 1;
for(int j = 0; j < p.second; ++j) {
v *= p.first;
res.push_back(res[i] * v);
}
}
}
sort(res.begin(), res.end());
return res;
}
private:
int N;
};
#line 4 "src/math/divisor_multiple_transform.hpp"
struct DivisorTransform {
template <typename T>
static void zeta_transform(vector<T>& f) {
const int N = f.size() - 1;
const auto sieve = EratosthenesSieve(N).primes;
for(const auto& p : sieve) {
for(int k = 1; k * p <= N; ++k) f[k * p] += f[k];
}
}
template <typename T>
static void moebius_transform(vector<T>& g) {
const int N = g.size() - 1;
const auto sieve = EratosthenesSieve(N).primes;
for(const auto& p : sieve) {
for(int k = N / p; k > 0; --k) g[k * p] -= g[k];
}
}
};
struct MultipleTransform {
template <typename T>
static void zeta_transform(vector<T>& f) {
const int N = f.size() - 1;
const auto sieve = EratosthenesSieve(N).primes;
for(const auto& p : sieve) {
for(int k = N / p; k > 0; --k) f[k] += f[k * p];
}
}
template <typename T>
static void moebius_transform(vector<T>& g) {
const int N = g.size() - 1;
const auto sieve = EratosthenesSieve(N).primes;
for(const auto& p : sieve) {
for(int k = 1; k * p <= N; ++k) g[k] -= g[k * p];
}
}
};
#line 4 "src/convolution/gcd_convolution.hpp"
template <typename mint>
vector<mint> gcd_convolution(const vector<mint>& a, const vector<mint>& b) {
assert(a.size() == b.size());
auto s = a, t = b;
MultipleTransform::zeta_transform(s);
MultipleTransform::zeta_transform(t);
for(int i = 0; i < (int)a.size(); ++i) s[i] *= t[i];
MultipleTransform::moebius_transform(s);
return s;
}